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1. Introduction 
R (https://www.r-project.org/) is a statistical programming language widely used for data 

analytics and statistics.  It is an interpreted language, like Python, so consists of a programming 

language and an interpreter that runs users’ programs. 

 

R has a number of different mechanisms for shared memory parallelism (parallelizing a program 

within a single ARCHER node), generally based around loop/thread parallelism.  There are also 

distributed memory parallel packages for R.  For this benchmarking we investigated the 

performance of the foreach shared memory parallel functionality (which distributes loop 

iterations to different threads) and the SPRINT distributed memory parallel package 

(http://www.r-sprint.org/). 

2. Compilation, Setup and Input  
 

Compilation 

There are a number of pre-requisites required to build R on a system like ARCHER.  We started 

by installing: 

• bzip2 

• xz 

• curl 

• pcre 

 

When building R it is important to configure the maths libraries it uses correctly to give good 

performance.  There are two options on ARCHER, Cray’s libsci or Intel’s MKL. For these 

benchmarks we used Intel’s MKL and configured the build to use these like this (note, the same 

configuration can be used for the KNL and IvyBridge nodes on ARCHER): 

 
export LIBSCI="-L${MKLROOT}/lib/intel64 -lmkl_intel_lp64 -

lmkl_sequential -lmkl_core -lmkl_blacs_intelmpi_lp64 -lpthread -lm -

ldl" 

export LAPACK_LIBS="$LIBSCI" 

export BLAS_LIBS="$LIBSCI" 

export CRAYPE_LINK_TYPE=dynamic 

 

 

On the main ARCHER system we then configured ARCHER using the following setup: 

 
./configure --prefix=/work/d67/d67/adrianj7/R-mkl --with-blas --with-

lapack -with-x=no CC=cc FC=ftn F77=ifort CXX=CC CFLAGS="-

I/work/d67/d67/adrianj7/R-mkl/bzip2/include -

I/work/d67/d67/adrianj7/R-mkl/xz/include -I/work/d67/d67/adrianj7/R-

mkl/pcre/8.35/include -I/work/d67/d67/adrianj7/R-

mkl/curl/7.53.0/include -I/work/d67/d67/adrianj7/R-

mkl/readline/6.3/include -

I/opt/intel/composer_xe_2015.2.164/mkl/include" CPPFLAGS="-

I/work/d67/d67/adrianj7/R-mkl/bzip2/include -

I/work/d67/d67/adrianj7/R-mkl/xz/include -I/work/d67/d67/adrianj7/R-

mkl/pcre/8.35/include -I/work/d67/d67/adrianj7/R-

mkl/curl/7.53.0/include -I/work/d67/d67/adrianj7/R-

mkl/readline/6.3/include -

I/opt/intel/composer_xe_2015.2.164/mkl/include" LDFLAGS="-

L/work/d67/d67/adrianj7/R-mkl/bzip2/lib -L/work/d67/d67/adrianj7/R-

mkl/xz/lib -L/work/d67/d67/adrianj7/R-mkl/pcre/8.35/lib -

L/work/d67/d67/adrianj7/R-mkl/curl/7.53.0/lib -

L/work/d67/d67/adrianj7/R-mkl/readline/6.3/lib" 
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On the ARCHER KNL system we configured R as follows: 

 
./configure --prefix=/work/knl-users/adrianj/R --with-blas --with-

lapack -with-x=no CC=cc FC=ftn F77=ftn  CXX=CC CFLAGS="-I/work/knl-

users/adrianj/R/xz/include -I/work/knl-

users/adrianj/R/pcre/8.35/include -I/work/knl-

users/adrianj/R/curl/7.53.0/include -I/work/knl-

users/adrianj/R/readline/6.3/include -

I/opt/cray/pe/libsci/16.09.1/GNU/5.1/mic_knl" CPPFLAGS="-I/work/knl-

users/adrianj/R/xz/include -I/work/knl-

users/adrianj/R/pcre/8.35/include -I/work/knl-

users/adrianj/R/curl/7.53.0/include -I/work/knl-

users/adrianj/R/readline/6.3/include -

I/opt/cray/pe/libsci/16.09.1/GNU/5.1/mic_knl" LDFLAGS="-L/work/knl-

users/adrianj/R/bzip2/lib -L/work/knl-users/adrianj/R/xz/lib -

L/work/knl-users/adrianj/R/pcre/8.35/lib -L/work/knl-

users/adrianj/R/curl/7.53.0/lib -L/work/knl-

users/adrianj/R/readline/6.3/lib" 

 

We then ran make and built R. 

 

As R is an interpreted language, with a full runtime system, once the runtime system has been 

built the additional packages we require need to be installed in it.  This involves running the R 

runtime system (R) and running the following commands. 

 
options(download.file.method='wget') 

install.packages('rlecuyer')  

install.packages('boot') 

install.packages('e1071') 

install.packages('rbenchmark') 

install.packages('randomForest') 

install.packages('doMC') 

options(useHTTPS=FALSE) 

source("https://bioconductor.org/biocLite.R") 

biocLite("ShortRead") 

install.packages('sprint', dependencies=TRUE, 

repos='http://cran.rstudio.com/', INSTALL_opts ='--no-test-load') 

 

For the ARCHER KNL system the build of R failed because part of the build process involves 

running the programs that have been compiled to install additional packages.  However, as the 

programs have been compiled to run on the KNL hardware they fail on the KNL login nodes 

because they don’t have the same instruction set as the KNL processors themselves.   

 

This meant we had to build R on the ARCHER KNL nodes without the craype-mic-knl 

module loaded, and therefore without the correct KNL instruction set selected.  We compiled 

with the craype-ivybridge module loaded.  This means that the R executable was not built 

for the vector instructions on the KNL processors. 

 

We recognized that this might create performance issues for R on the KNL system so we also 

built R on a standalone KNL system, available at EPCC and called ninja, and copied that version of 

R to the ARCHER KNL system to allow a comparison between the version built without the KNL 

instruction set and the one built natively on the KNL 
 

Setup 

We ran on a number of standard ARCHER IvyBridge nodes, and the quad flat (aoe:quad_0) KNL 

nodes.  We did some initial testing of MCDRAM performance for the benchmark we are using in 

the evaluation and it had no performance impact so we have not used MCDRAM for our tests. 
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We used up to 64 cores per KNL node, with no hyperthreading on either system.  Hyperthreading 

was investigated and did not improve performance so is not presented here. 

 

The performance data we present is the fastest version of two independent runs for each 

benchmark.  There was no significant variation between the runtime of the two different runs so 

error bars outlining the variability of performance for each data point are not included. 

Input 

For the test we are using the randomForest functionality in R, with a test cases representing 

100000 genes and 62 cases.  We implemented versions of this script using both the SPRINT 

functionality and the foreach functionality available in R.  The main functionality from these 

input scripts are provided in Appendix A. 

 

For these benchmarks we have skipped the randomForest tuning step and hard coded a number 

of trees and the number of variables available for splitting at each tree node (mtry).  This 

enables us to quickly evaluate the randomForest performance using a consistent setup. 

3. Performance Data 
Figure 1 shows the core for core performance of R when using SPRINT or foreach on KNL and 

IvyBridge processors.  We are comparing a number of different variations in this graph: 

• R parallelisation strategies: foreach vs SPRINT 

• Compilers on the main ARCHER system: Intel vs GNU 

• Version compiled directly on KNL (ninja) vs compiled on the ARCHER login nodes 

• Processors: IvyBridge vs KNL 

Note, where a compiler is not mentioned, the Intel compiler was used. 

 

 
Figure 1: R parallel performance (SPRINT and foreach) on IvyBridge and KNL processors 

 We can see on a core for core comparison both the SPRINT and foreach implementations are 

slower on KNL than they are on IvyBridge.  We can see that foreach and SPRINT on KNL offer 

similar performance, although at higher core counts foreach is a little faster (172 seconds vs 

130 seconds at 64 cores on the KNL). 

 

It is also evident from the graph that the version of R compiled on our native KNL system (ninja), 

where we can compile directly on the KNL processor and therefore use the correct KNL compiler 

flags, significantly outperforms the version we compiled on ARCHER.   We can see targeting the 

correct instruction set for the KNL is important in terms of performance.  Indeed at 64 cores the 
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ninja version is nearly 2x faster than the ARCHER KNL version (see the “Foreach KNL” points vs 

the “Foreach KNL ninja version” points in Figure 1). 

 

This highlights the importance of correct compilation on a system like the ARCHER KNL testbed, 

and identifies a problem that we need to solve for the ARCHER system, either by enabling 

compilation directly on the KNL nodes, or by providing some KNL based login nodes for 

compilation. 

 

We could not do a similar performance comparison for SPRINT as SPRINT requires MPI libraries, 

and ninja does not have the Cray MPI libraries used on the ARCHER KNL system.  However, a 

direct comparison of foreach vs SPRINT on our standalone system (ninja) suggests that the 

same performance impact is being experienced by the SPRINT version of the randomForest 

benchmark on the ARCHER KNL system. 

 

We can also see, from Figure 1, that the Intel compilers provides better performance on 

IvyBridge processors than the GNU compilers. 

 

Figure 2 presents a node for node comparison, rather than a core for core comparison, of the 

SPRINT performance on the ARCHER and ARCHER KNL systems.  As we have multiple data 

points per node (i.e. 1, 2, 4, 8, 16, 24 cores are all 1 node) we can see a range of performances for 

some of the node numbers. 

 
Figure 2: Runtime of SPRINT on IvyBridge and KNL processors vs number of nodes used 

 We can see from Figure 2 that the KNL system is not providing as good performance, on a node 

for node basis, as the IvyBridge system, and it is not scaling either.  However, the scaling issues 

are likely to be because this test case isn’t large enough to require all the processes we are using 

(128 MPI processes for the 2 node KNL data point).  Indeed, the IvyBridge performance is not 

scaling well when going from 1 to 2 to 3 nodes (3 nodes represent 72 MPI processes). 

 

It is also likely that the poor KNL performance is, at least partly, due to the compilation issue we 

observed with the foreach case (i.e. ARCHER build vs ninja build).   

 

Finally, Figures 3 and 4 demonstrate performance improvements that can be achieved if 

underpopulating on KNL processors by making sure threads or processes are properly 

distributed across the processor rather than being clustered on the first N cores. 
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Figure 3: Comparing default KNL performance to the performance when foreach threads are 

manually distributed across the cores as evenly as possible 

 For the foreach case, where R is creating a set of threads to do the parallel work, we can use 

the aprun flag -cc to ensure threads are distributed across cores,  i.e. if we are running 16 

threads, we can distribute them across the 64 cores  like this: 
aprun –n 16 –cc 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60 ./R 

 

Such an approach gives between a 10-20% performance improvement over the default thread 

mapping aprun will perform.  Note, if you were doing this on a different system, not a Cray, you 

could use the taskset utility to achieve the same benefits. 

 

With the SPRINT version, where we have MPI processes rather than threads, we can use the 

aprun depth flag (-d) to specify how many cores to allocate to each MPI process.  For instance, 

we could use this aprun line to run 16 SPRINT processes on the 64 cores of the KNL processor: 
aprun –n 16 –d 4 ./R 

 

As shown in Figure 4, this approach gives similar performance benefits (10-20%) for the SPRINT 

version.  Obviously, such an approach is not applicable if you are using all 64 cores on the KNL 

processor, and it also does not give any benefit in our cases when using less than 4 cores (as we 

aren’t able to saturate the hardware of a single quadrant with such a small number of processes 

or threads). 

 

The final data point on the balanced line in Figure 4 is where we are underpopulating on 2 nodes, 

running 64 MPI processes, 32 on each node, with a depth of 2.  This does provide a significant 

speedup for the 2 node case, although it still isn’t quick enough to make it worth using the 

resources of 2 nodes for the simulation. 
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Figure 4: Comparing default KNL SPRINT performance to when MPI processes are distributed as 

evenly as possible across cores 

4. Summary and Conclusions 
We have shown that R can be parallelised, and scale well with both shared memory (foreach) 

and distributed memory (SPRINT) approaches on ARCHER.  We have identified that compilation 

on KNL needs careful attention and configuration to get the best performance on the KNL 

processor, and some method of compiling applications that require it to be carried out directly on 

the KNL would be useful.   

 

We have also shown that process and thread placement can impact performance if you aren’t 

filling up nodes (if you’re underpopulating).  Currently R on KNL processors, at least for the 

randomForest benchmark we used in this benchmarking, is slower than on IvyBridge processors. 
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Appendix A  
The SPRINT random forest script: 
best.mtry <- 477 

ntrees = 8192 

 

transformedInputData = t(inputdata) 

 

before_bench <- Sys.time() 

rf.train <- prandomForest(x=transformedInputData, 

                            y=sampleclasses, 

                            ntree=ntrees, 

                            importance=TRUE, 

                            proximity=TRUE, 

                            mtry=best.mtry)  
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after_bench <- Sys.time() 

 

pterminate() 

 

 

The foreach random forest script: 
library(randomForest) 

 

library(doMC) 

registerDoMC(noOfThreads) 

 

best.mtry <- 477 

ntrees = 8192 

 

rf.train <- foreach(ntreeloc=ntrees, .combine=combine, 

.multicombine=TRUE,.packages='randomForest') %dopar% { 

randomForest(x=transformedInputData, 

                            y=sampleclasses, 

                            ntree=ntreeloc, 

                            importance=TRUE, 

                            proximity=TRUE, 

                            mtry=best.mtry) 

} 

 

Appendix B  
Timings for the graphs in this report.  Figures 1 and 2 are based on this data. 

ARCHER IvyBridge Timings 

  SPRINT foreach 

Number of Nodes 

Used 

Number of Cores 

Used 

GNU 

Compiler 

Intel 

Compiler 

Intel 

Compiler 

1 1 991 705 769 

1 2 523 379 401 

1 4 272 205 213 

1 8 154 112 109 

1 16 83 60 60 

1 24 62 44 39 

2 36 51 35  

2 48 44 30  

3 64  26  

3 72  30  

 

ARCHER KNL Timings 

     

  SPRINT foreach 

Number of Nodes 

Used 

Number of 

Cores Used 

Intel 

Compiler 

Intel 

Compiler 

Ninja 

version 

1 1 3606 3598 2228 

1 2 2012 2011 1229 

1 4 1015 1012 615 

1 8 521 511 314 

1 16 282 270 162 
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1 32 168 162 93 

1 64 172 130 69 

2 128 241   

 

Figures 3 and 4 are based on this data from the ARCHER KNL system: 

  SPRINT foreach 

Number of 

Nodes Used 

Number of 

Cores Used 

Normal 

distribution 

Balanced 

distribution 

Normal 

distribution 

Balanced distribution 

 

1 1 3606  3598  

1 2 2012 1799 2011 1799 

1 4 1015 911 1012 917 

1 8 521 468 511 460 

1 16 282 252 270 243 

1 32 168  162 147 

1 64 172  130  

2 128 241 158   

 


