
A Lightweight Approach to Performance Portability

with targetDP

Alan Gray1 and Kevin Stratford1

September 7, 2016

Abstract

Leading HPC systems achieve their status through use of highly parallel devices such as NVIDIA GPUs or Intel Xeon
Phi many-core CPUs. The concept of performance portability across such architectures, as well as traditional CPUs, is
vital for the application programmer. In this paper we describe targetDP, a lightweight abstraction layer which allows grid-
based applications to target data parallel hardware in a platform agnostic manner. We demonstrate the effectiveness of
our pragmatic approach by presenting performance results for a complex fluid application (with which the model was co-
designed), plus a separate lattice QCD particle physics code. For each application, a single source code base is seen
to achieve portable performance, as assessed within the context of the Roofline model. TargetDP can be combined
with MPI to allow use on systems containing multiple nodes: we demonstrate this through provision of scaling results
on traditional and GPU-accelerated large scale supercomputers.

Keywords

Performance Portability, Programming Models, HPC, GPU, Manycore, Computational Physics

1 Introduction

Each new generation of HPC system must offer an increase
in the number of operations that can be performed per
second. Performance advances in hardware are realized
through parallelism, where the trend is not just to increase
the number of compute nodes but also to increase the
capability of each node through use of highly parallel
devices such as Graphics Processing Units (GPUs) or many-
core CPUs. The key challenge for application programmers
is how to achieve “performance portability”, such that a
single, easily maintainable source code base can run with
optimal performance across the range of modern parallel
architectures.

Most HPC applications have, over decades of development
targeting traditional CPU-based systems, grown to many
thousands of lines of code written in base languages
such as C, C++ and Fortran. Compiler technology cannot
automatically transform such raw code into executables that
can always perform well across such architectures, so some
form of modernization is required at the source code level.
In order to achieve performance portability, it is inevitable
that the concept of abstraction must play a role in one
form or another, to allow generic syntax to be mapped to
a range of different executables. There are two potential
pitfalls with this approach, though. The first is that any code-
generation software required to perform the mapping must
be maintained along with the application, so it is important
that the software sustainability problem is not just shifted
from the application into the generator. It is very difficult
to avoid this problem for any sophisticated code-generation
mechanism. If a large community can reach agreement, then
the maintenance can be shared, but of course even when
achievable this can take time. The second potential pitfall is
that the modernization necessary can be relatively disruptive,

which can discourage developers from committing to the
new approach.

In this paper we address these problems in a pragmatic
way, where our abstraction is intentionally kept as simple and
lightweight as possible. We demonstrate the effectiveness
of this approach through performance portability results
for real complex applications. The targetDP model (Gray
and Stratford 2014) provides an abstraction layer which
allows applications to target Data Parallel hardware in
a platform agnostic manner, by abstracting the memory
spaces and hierarchy of hardware parallelism. Applications
written using targetDP syntax are performance portable:
the same source code can be compiled for different targets
(where we currently support NVIDIA GPU accelerators
and modern multicore and manycore CPUs including the
Intel Xeon Phi which rely on vectorization). TargetDP is
implemented using a minimal set of C-preprocessor macros
and library functions, so is easily maintainable, sustainable
and extendable. There are no special datatypes, so it is
possible to adapt incrementally and also inter-operate with
other programming paradigms. The model is appropriate for
abstracting the parallelism contained within each compute
node, and can be combined with, e.g. MPI to allow use on
systems containing multiple nodes.

The model and implementations were developed in co-
design with a particular HPC application, Ludwig (Desplat
et al. 2001), which uses lattice Boltzmann and finite
difference techniques to simulate a wide range of complex

1EPCC, The University of Edinburgh

Corresponding author:

Alan Gray, EPCC, The University of Edinburgh
Edinburgh, EH9 3FD, UK
Email: a.gray@ed.ac.uk

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

ar
X

iv
:1

60
9.

01
47

9v
1

 [c
s.D

C]
 6

 S
ep

 2
01

6

2

fluids. However, we demonstrate general applicability using
the separate MILC code (The MILC Collaboration 2014),
which simulates fundamental particle physics phenomena
through Lattice QCD techniques. TargetDP is particularly
suited to the structured grid techniques employed by both of
these applications since the regularity and parallelism can be
exploited in a straightforward manner. Therefore, whilst at
present the model can be thought of as being specific to this
computational domain, it should also applicable to a wider
class of data parallel problems.

In Section 2 we describe these applications, focusing
on the test cases used for performance results, and we
also discuss other approaches to performance portability.
In Section 3, we present the abstractions used to achieve
performance portability. We go on to present single-
processor results in Section 4, where we analyse performance
across architectures following the Roofline model (Williams
et al. 2009) (which gives standard guidelines for comparing
against the capability of the hardware). We extend
the analysis to include scaling over multiple nodes of
supercomputers in Section 5, through the combination of
targetDP and MPI.

2 Background

2.1 The Applications
Many scientific and engineering problems are made tractable
through the discretization of space and time, to allow
representation and evolution within a computer simulation.
In this paper we focus on two such applications, Ludwig
and MILC (both of which are open source, use C as a base
language and MPI for node-level parallelism).

2.1.1 Ludwig
Many substances which are neither solids nor simple fluids
can be classed as “soft matter”, also known as “complex
fluids”. Familiar examples include foodstuffs, lubricants,
cosmetic and health-care items, bodily fluids (such as those
found in the joints) and, pertinent to this paper, liquid crystals
(LCs). The versatile Ludwig simulation package (Desplat
et al. 2001) is a vital link between theory and experiment
in enabling new and improved soft matter materials. Like
many such applications, Ludwig represents space as a 3D
structured grid (or lattice), where the physical system,
at a certain point in time, is represented by a set of
double precision values at each lattice point. The lattice
Boltzmann (LB) method (Succi 2001) is used to evolve the
hydrodynamics in a standard timestepping manner. Ludwig,
however, can simulate not just simple but complex fluids;
the hydrodynamical evolution is coupled with other finite
difference techniques to properly represent the substance
under investigation.

LCs are well known for their utility in displays, but
are also prevalent in a variety of other technological items
and natural systems. There is still much to be understood
about the range of possible LC systems, which are a key
focus of interest in current research using coarse-grained
methods (Henrich et al. 2013)(Tiribocchi et al. 2014). The
LC simulation, which comprises one of the testcases used
later in this paper, couples an “order parameter” field (a 3⇥ 3
tensor, which is symmetric and traceless) representing the

composition and structure of the crystal, and a “distribution”
field representing the flow of the fluid. The former is
evolved via an advection-diffusion equation appropriate for
rod-like molecules, and the latter via LB. They interact
through a local force, derived from the former, which acts
on the latter at every timestep of the simulation. The main
computational components of each timestep are as follows,
where the names given in quotes are those used later in this
paper when presenting performance results. The “Collision”
models the interaction of the individual fluid molecules
and the “Propagation”, which mimics the convection of
the fluid, involves displacing the fluid data one lattice
spacing in the appropriate direction. The force which couples
the order parameter with the distribution is calculated as
the divergence of the “Chemical stress”, which in turn is
calculated as a function of the order parameter field and its
“Order Parameter Gradients” derivatives. The “LC Update”
involves evolution of the order parameter itself, using a finite
difference implementation of the Beris-Edwards model with
the Landau-de Gennes free energy functional (Beris and
Edwards 1994)(de Gennes and Prost 1995). The “Advection”
involves calculating the flux in the order parameter due to the
advective bulk flow, and “Advection Boundaries” includes
the effects of any boundary conditions to this.

To allow utilization of multi-node computing architec-
tures, Ludwig is parallelized using domain decomposition
and MPI in a standard way. “Propagation”, “Advection”,
“Advection Boundaries”, and “Order Parameter Gradients”
involve updates based on neighbouring lattice site data,
so are classed as stencil operations, whereas “Collision”,
“Chemical Stress” and “LC Update” involve operations local
to each lattice site. To allow for the former, each local
sub-domain is surrounded by a halo region populated using
neighboring sub-domain data through MPI communications.
In recent years we have adapted Ludwig for use on mul-
tiple GPUs in parallel (as described in (Gray et al. 2012),
(Gray et al. 2015) and (Gray and Stratford 2013)), which
has enabled an improved understanding of the interactions
between LCs and large colloidal particles (Stratford et al.
2015).

2.1.2 MILC
Matter consists of atoms, which in turn consist of nuclei and
electrons. The nuclei consist of neutrons and protons, which
comprise quarks bound together by gluons. The theory of
how quarks and gluons interact to form nucleons and other
elementary particles is called Quantum Chromo Dynamics
(QCD). For most problems of interest, it is not possible to
solve QCD analytically, and instead numerical simulations
must be performed. Such Lattice QCD calculations are
known to give excellent agreement with experiment (Davies
et al. 2004), at the expense of being very computationally
intensive.

The MIMD Lattice Computation (MILC) code is a freely
available suite for performing Lattice QCD simulations,
developed over many years by a collaboration of researchers
based in the US (The MILC Collaboration 2014). The test
case used in this paper is derived from the MILC code
(v6), and forms a component Unified European Application
Benchmark Suite (UEABS), a set of application codes
designed to be representative of HPC usage in the European

Prepared using sagej.cls

Gray and Stratford 3

Union (Bull 2013). This consists of the inversion of the
Wilson Dirac operator using the conjugate gradient method.
The work presented in this paper is part of a project to extend
the UEABS suite to accelerators.

Spacetime is discretized into a 4D grid, and at each point
on the grid exists a set of values that represent the quark and
gluon content at that point. These structures are relatively
small (compared to the size of the grid) complex vectors
and matrices, and the conjugate gradient algorithm involves
correspondingly small linear algebraic operations at each
point on the grid. With reference to the labels used for
performance analysis later in this paper, “Extract” involves
extracting the quark field from one representation to another,
and “Extract and Mult.” involves a similar quark field
manipulation together with a matrix-vector multiplication
to interact with the gluon field. The “Insert and Mult” and
“Insert” parts involve the reverse process. “Scalar Mult.
Add” involves a scalar multiplication and vector addition for
the quark field. These operations are all local to each grid
point, but the “Shift” operation involves shifting the quark
field data in each direction, which is a stencil operation.
When running on a single processor, this just involves local
memory copy operations but, when operating with node-
level parallelism, MPI is used within this operation to buffer
and move the data that must cross subdomain boundaries.

2.2 Other Approaches to Performance
Portability

The use of a low-level native programming model, e.g.
CUDA for NVIDIA GPUs, permits excellent performance
on the native architecture but lacks portability.

The OpenCL standard by the Khronos group (Khronos
OpenCL Working Group 2015) gives a similar model to
CUDA but with improved portability, particularly to AMD
GPUs, and in principle to X86 CPUs including Xeon Phi.
Intel do not currently plan to support OpenCL, however,
on the next generation of Xeon Phi (Knights Landing).
It is also relatively low level and complex, and can
have performance overheads relative to native approaches
(although the situation is improving (McIntosh-Smith et al.
2014)). The SYCL standard (Khronos OpenCL Working
Group - SYCL Subgroup 2015), also by Khronos, has
recently emerged: this aims to be higher level and more
productive, particularly for C++ applications. There also
is active research into automatic generation of hardware-
specific OpenCL code, e.g. with functional programming
techniques and rewrite rules (Steuwer et al. 2015). The use
of OpenCL, within the types of applications discussed in this
paper, would mean increased complexity and compromised
portability and performance, compared with targetDP.

Directive-based standards, in particular OpenACC (The
OpenACC Standard Committee 2015) and OpenMP 4.0
(OpenMP Architecture Review Board 2015) rely on the
compiler to automatically manage data movement and
computational offloading, with help from user-provided
directives. This approach offers high productivity at the
expense of user control and often performance, and actually
lacks portability since the required directives vary across
architectures.

Alternatively, a separate source-to-source generator (e.g. a
preprocessor, compiler or library) can be used to transform
generic appropriately defined syntax into multiple forms,
which can each be compiled by the standard compiler
for the specific target architecture. Kokkos (Edwards
et al. 2012) and RAJA (Hornung et al. 2014), both C++
abstraction frameworks, have conceptual similarities to the
work presented in this paper, since they provide suitable
abstractions for node-level parallelism and data movement
to allow portable performance across modern architectures.
These are much more sophisticated than targetDP since they
aim to be general purpose models and support a wide range
of application areas. The caveat, however, is the disruption
required to adapt legacy applications (particularly those
which do not already use C++). Additionally, users are often
hesitant to commit to third-party models and libraries which
do not form any standard so have no guaranteed longevity.
The developers are addressing the latter by lobbying for
much of the models to be integrated into the C++ standard.
The work described in this paper, conversely, exploits the
domain specificity (to grid-based codes) to retain simplicity,
so these issues are much less severe. Other frameworks such
as OCCA (Medina et al. 2014) and HEMI (Harris 2016) are
alternative C++ based models, which have varying levels of
support for explicitly targeting SIMD units.

Legion (Bauer et al. 2012) is another very sophisticated
model. This not only provides portable abstractions, but also
allows the programmer to express tasks and dependencies
which, through a runtime system, can be automatically
executed with optimal ordering, dependent on the hardware
resource in use. This is very powerful in extracting
performance, but even more disruptive to the programmer
that the approaches discussed above. Legion is really
designed as a low level interface for other domain specific
languages to be built on. Recently, however, the Regent
compiler (Slaughter et al. 2015) has been introduced which
generates Legion code from a higher-level model.

So clearly, the best option for a programmer wishing to
invest in code modernization depends on the application.
Given our pragmatic and simple approach, one aim of this
paper is to clearly describe, in an accessible manner, those
concepts which are common, such as the abstraction of
memory accesses and data parallel operations, the expression
of data locality, and the resulting performance portability
achieved. We hope this is of interest even to those readers
who decide to follow one of the other available development
routes.

3 targetDP

In this section we describe the targetDP programming model
(first introduced in (Gray and Stratford 2014)). The aim is to
provide, in the simplest possible way, an abstraction that can
allow the same data-parallel source code to achieve optimal
performance on both CPU-like architectures (including Xeon
Phi) and GPUs. Before describing our model, we first
give details on how we abstract memory accesses through
a simple layer. This is necessary to allow architecture-
specific data-layouts, which are vital for memory bandwidth
performance.

Prepared using sagej.cls

4

3.1 Data Layout
To facilitate optimal memory bandwidth, it is crucial that the
layout of data in memory is tailored for the specific memory
access patterns that result from the execution of a targetDP
application on any specific architecture.

For many grid-based applications, the simulation data is
“multi-valued”: comprised from multiple numerical values
located at each point on the grid, and how we choose to store
this in memory can have a dramatic effect on performance.
To illustrate the available options, a useful analogy is that of
red (r), green (g) and blue (b) values collectively representing
each pixel of an image. For brevity, let’s assume that our
image is very small at only 4 pixels. The naive way to store
the entire image is |rgb|rgb|rgb|rgb|. This is known as the
Array of Structures (AoS) format since we are storing the rgb
values consecutively as each entry of an array of pixels. An
alternative is the Structure of Arrays (SoA) storage scheme
|rrrr|gggg|bbbb|. These are the two opposite extremes of
a more general scheme: the Array of Structures of (short)
Arrays (AoSoA) format, where the length of the short array
can vary. For example, ||rr|gg|bb|||rr|gg|bb||, which has a
short array length of 2, is a layout in which we store the first
2 values of each of red, green and blue, then repeat for the
next 2 of each. The AoS and SoA formats described above
have a short array length of 1 and 4 respectively in this case.

To represent such multi-dimensional structures in C or
C++, it is usually most straightforward to use 1-dimensional
arrays in the application and to “flatten” accesses through
linearization of the indices. Let ipix and irgb denote the
pixel and rgb value indices of this 2-D problem respectively,
and N be the total number of pixels (with, of course, 3
being the total number of rgb components). Then, if using
the AoS scheme we access the image with code such as
image[ipix

*

N+irgb]. The alternative SoA scheme
would instead use image[irgb

*

3+ipix], and AoSoA
would use

image[((ipix/SAL)

*

3

*

SAL+irgb

*

SAL+(ipix-(ipix/SAL)

*

SAL))]

(where the short array length is specified through the SAL
preprocessor-defined integer constant).

For most lattice-based scientific simulations, including
those discussed in this paper, the main bottleneck is memory
bandwidth. The specific layout of data in memory has
a major effect on memory bandwidth performance and
unfortunately the best layout differs across architectures.
Therefore, for performance portability it is required memory
accesses should not be explicitly written, as above, within
the application. Instead they should be abstracted through
an intermediate layer, in which the optimal layout can be
specified through a configuration option without any changes
to the application itself.

Following the philosophy of this paper, we achieve
this in a simple way. We define macros using the C-
preprocessor to provide the required memory addressing
layer. At the application level, our accesses become, e.g.,
image[INDEX(irgb,ipix)], where different versions
of the INDEX macro can expand to match different
linearizations (or, equivalently, the single generic AoSoA
version can be used with different short array lengths).

We can follow the practice described in this section for
the multi-dimensional data structures that naturally exist in

real structured grid problems, which have one dimension
corresponding to the grid points (c.f. the pixel dimension)
and one or more dimensions correspond to the components
stored at each grid point (c.f. the rgb values). Note that in
practice we also pass extent values into the macros to allow
flexibility regarding grid dimensions.

3.2 Data Parallel Abstractions
The execution time of grid-based applications is typically
dominated by the parts of the code that perform data-
parallel operations across the grid: at each point on the
grid, the multi-valued data resident at that point is updated
(sometimes using data from neighbouring grid points). We
use the the terminology “host” to refer to the CPU on which
the application is running, and “target” refers to the device
targeted for execution of these expensive operations. When
the target is a GPU, there is clearly a distinction in hardware
between the host and target. But the host and target can
also refer to the same hardware device, for instance when
we are using CPU (or Xeon Phi) architectures. Importantly,
we always retain the distinction of host and target in the
application, to allow a portable abstraction.

The aim of targetDP is to provide a lightweight abstraction
that can map data-parallel codes to either CUDA or
OpenMP, whilst allowing good vectorization on CPU-like
architectures.

3.2.1 Thread-level Parallelism
Consider a serial C code which involves a data-parallel loop
over N grid points, e.g.

for (index = 0; index < N; index++) {

...

}

The ... refers to whatever operation is performed at each
grid point. An OpenMP implementation of this code would
instruct the compiler to decompose the loop across threads
with use of a pragma, e.g.

#pragma omp parallel for

for (index = 0; index < N; index++) {

...

}

The thread-level parallelism in CUDA does not involve the
concept of loops. Instead, the grid-based operation becomes
a kernel to be executed in parallel by a number of threads,
e.g.

__global__ void scale(double

*

field) {

int index=blockDim.x

*

blockIdx.x+threadIdx.x;

if (index < N)

{

...

}

return;

}

The operation must be contained within a function, where the
__global__ keyword specifies it should be compiled for
the GPU, and CUDA internal variables are used to retrieve a
unique index for each thread.

So, therefore, we can provide an abstraction that can map
to either OpenMP or CUDA by introducing the targetDP
syntax:

Prepared using sagej.cls

Gray and Stratford 5

__targetEntry__ void scale(double

*

field) {

int index;

__targetTLP__(index, N) {

...

}

return;

}

__targetEntry__ and __targetTLP__ are C-
preprocessor macros. The former is used to specify that
this function is to be executed on the target and it will
be called directly from host code (where the analogous
__target__ syntax is for functions called from the
target). For implementation in CUDA it is mapped to
__global__, so the function becomes a CUDA kernel,
and for the C implementation the macro holds no value so the
code reduces to a regular function. We expose the grid-level
parallelism as thread-level parallelism (TLP) through the
__targetTLP__(index,N) syntax, which is mapped
to a CUDA thread look-up (CUDA implementation), or an
OpenMP parallel loop (C implementation). In the former
case, the targetDP example therefore maps exactly to the
CUDA example. For the latter, the only difference to the
OpenMP example is that the code is now contained in a
function.

3.2.2 Instruction-level Parallelism
We must also be able to achieve good vectorization on CPU-
like architectures. The compiler will try to create vector
instructions from innermost loops, but the problem with the
above is that the extent of the innermost loop is dependent
on the application, so does not necessarily map well to any
specific hardware vector length (and furthermore not all such
loops over multi-valued data are parallel in nature). To give
a simple example, imagine that ... is given by

int iDim;

for (iDim = 0; iDim < 3; iDim++)

field[INDEX(iDim,index)] =

a

*

field[INDEX(iDim,index)];

The field data structure has 3 components at each grid
point, and an extent of 3 for the innermost loop is not optimal
for creating vector instructions of size, e.g. 4 or 8 for CPU
or Xeon Phi (which, when using double precision is the
natural vector length for these architectures which feature
256-bit AVX and 512-bit IMCI instructions), respectively.
The solution is that we can allow striding within our
implementation of __targetTLP__, such that each thread
works, not on a single lattice site, but a chunk of lattice
sites. Then, at the innermost level, we can re-introduce this
grid-level parallelism for the compiler to vectorize. The
size of the chunk (i.e. length of the stride), which we call
the “Virtual Vector Length” (VVL), can be tuned to the
hardware through a targetDP configuration option at compile
time. The new instruction-level parallelism (ILP) is specified
using the __targetILP__ syntax. When VVL>1, then
__targetILP__ is mapped to a short loop over the
sites in the chunk, augmented with the OpenMP SIMD
directive. Since the loop extent, VVL, appears as a constant
to the compiler (and is chosen to be a suitable value),
vectorization is straightforward. The ILP syntax, therefore,
has an associated index that ranges between 0 and VVL-1,
such that it can be used as an offset when combined with

__targetConst__ double a;

__targetEntry__ void scale(double

*

field) {

int baseIndex;

__targetTLP__(baseIndex, N) {

int iDim, vecIndex;

for (iDim = 0; iDim < 3; iDim++) {

__targetILP__(vecIndex)

field[INDEX(iDim,baseIndex+vecIndex)] =

a

*

field[INDEX(iDim,baseIndex+vecIndex)];

}

}

return;

}

Figure 1. A simple example of a targetDP kernel.

targetMalloc((void

**

) &t_field, datasize);

copyToTarget(t_field, field, datasize);

copyConstToTarget(&t_a, &a, sizeof(double));

scale __targetLaunch__(N) (t_field);

targetSynchronize();

copyFromTarget(field, t_field, datasize);

targetFree(t_field);

Figure 2. The host code used to call the targetDP kernel.

the TLP thread index in accessing arrays. The final targetDP
implementation for this example is given in Figure 1. Note
that we also include the definition of the constant that is
used in the multiplication: the __targetConst__ macro
maps to __constant__ in the CUDA implementation
(and holds no value for the C implementation) to allow use
of the constant memory cache on the GPU.

3.2.3 Memory Management

The scale function is called from host code as in Figure
2. This illustrates how the model draws a distinction between
the memory space accessed by the host and that accessed
by the target. The targetMalloc and targetFree

API functions wrap cudaMalloc and cudaFree for the
CUDA implementation, and regular malloc and free

for the C implementation. Similarly, the copy

*

routines
abstract data transfer in a portable fashion. It is assumed
that code executed on the host always accesses the host
memory space, and code executed on the target (i.e. within
target functions) always accesses the target memory space.
The host memory space can be initialized using regular
C/C++ functionality (not shown here). For each data-
parallel data structure, the programmer should create both
host and target versions, and should update these from
each other as and when required. Data parallel operations
are achieved through passing target pointers into target
functions. The __targetLaunch__ macro maps to the
regular CUDA launch syntax in the CUDA implementation,
and holds no value in the C implementation, and similarly
for targetSyncronize.

For the C implementation, the host and target versions of
data structures will exist in the same physical memory space.

Prepared using sagej.cls

6

Processor Product Details Peak Perf. Stream Triad
(Dbl. Prec.) (Measured)

Ivy-Bridge Intel Xeon E5-2697 v2 259 Gflops 49.8 GB/s
12-core CPU @ 2.70GHz

Haswell Intel Xeon E5-2630 v3 154 Gflops 40.9 GB/s
8-core CPU @ 2.40GHz

Interlagos AMD Opteron 6274 141 Gflops 32.4 GB/s
16-core CPU @ 2.20GHz

Xeon Phi Intel Xeon Phi 5110P 1.01 Tflops 158.4 GB/s
60-core CPU @ 1.053GHz

K20X Nvidia Tesla K20X GPU 1.31 Tflops 181.3 GB/s
K40 Nvidia Tesla K40 GPU 1.43 Tflops 192.1 GB/s

Table 1. Technical details of the processors used in the
performance analysis.

The host implementation can implement these as physically
distinct, or can instead use pointer aliasing: the model is
agnostic to this. Note that this explicit memory model will
map well to future CPU-like architectures, including the next
generation of Xeon Phi, “Knights Landing”, which features a
high-bandwidth stacked memory space in addition to regular
DRAM.

In applications, it is often necessary to perform reductions,
where multiple data values are combined in a certain way.
For example, values existing on each grid point may be
summed into a single total value. The targetDP model
supports such operations in a simple but effective way. It
is the responsibility of the application to create the array
of values (using standard targetDP functionality) to act as
the input to the reduction operation. The application can
then pass this array to the API function corresponding to the
desired reduction operation (e.g. targetDoubleSum for
the summation of an array of double-precision values). If the
required reduction operation does not yet exist, the user can
simply extend the targetDP API using existing functionality
as a template.

In this section we have illustrated the basic key
functionality. Obviously, real applications are much more
complex that the example given above, and correspondingly
there exists a range of additional targetDP functionality,
as detailed in the Specification (Gray and Stratford 2016).
In particular, we provide functions that allow optimal
performance when data transfers between host and target can
be restricted to specific subsets of grid points.

4 Performance

In this section, our main aim is to demonstrate that use of
targetDP allows, for each application, a single version of
source code to be performance portable across the range
of relevant modern hardware architectures. We first present
the performance, for each of the Ludwig and MILC codes,
across different processors. We then go on to compare
these observations to hardware capability, using the Roofline
model to guide us.

Details of the processors used are given in Table 1.
We include regular multi-core CPUs, the Intel Xeon Phi
manycore CPU and NVIDIA GPUs. This choice naturally
includes those processors present in the supercomputers on
which we will extend our analysis in Section 5: Ivy-bridge,
Interlagos and K20X. Haswell and K40 are newer lines
than Ivy-Bridge and K20X respectively, so are included
give assurance that our results are representative of modern
technology.

To permit a clear comparison of the capabilities of the
different processor architectures we restrict our analysis, in
this section, to that using a single processor, be that a CPU
or GPU. This means that, for example, we will compare a
single Ivy bridge CPU with a single K40, where each is fully
utilized. In section 5, where extend our analysis to multi-
node systems, we will compare on a node-by-node basis,
with each node fully utilized, to give a comparison which is
more natural considering normal utilization of such systems.

For the CPU and Xeon Phi (where the latter is in the
“native” mode of use so can be treated on the same footing
as a regular CPU) we use the C implementation of targetDP,
which maps to OpenMP (with the number of threads set to
best utilize the number of cores, or virtual hyperthreaded
cores if the latter is beneficial) in each case. Note that
the 16-core Interlagos processor is actually comprised from
two 8-core chips in the same socket, so has two NUMA
regions. Having tested the different options of mapping to
this architecture, we use the best performing configuration
of two MPI tasks each controlling 8 OpenMP threads
(restricted to their respective NUMA regions). We use the
CUDA implementation of targetDP for GPU results, with
the number of CUDA threads per block set at 128 (which,
through trial and error, has been found to be a well-
performing value).

In Figure 3 we show the time taken for the full Ludwig
(top left) and MILC (top right) application test cases, across
the different architectures, where the testcase size (for each
application) has been chosen to fit onto a single processor.
These results include all overheads and have been run for
1000 timesteps (Ludwig) or conjugate gradient iterations
(MILC): this arbitrary number is chosen to be large enough
to be representative of production usage (and smooth out any
fluctuations), where each test is performed on an otherwise
unoccupied node. The results in the figure are decomposed
into the main kernels, plus the remainder which includes
all other sections of the code (including PCI-express data
transfer overheads in the GPU case).

Considering the traditional CPU results it can be seen that,
overall, the Ivy-Bridge has the performance advantage over
the Haswell, where the difference is more pronounced for
Ludwig. The AMD processor is seen to perform significantly
less well than both its Intel counterparts. Now, when we
extend our analysis to the remaining processor types, we
clearly see the advantages offered by these modern devices.
The GPUs are between 3 and 4 times as fast as the
Ivy-Bridge, for both Ludwig and MILC. The Xeon Phi
performance is seen to be significantly better than Ivy-bridge
but worse than the GPU; better for MILC than for Ludwig.

As discussed in Section 3, the optimal choice of data
layout and Virtual Vector Length (VVL) varies across
architectures, and targetDP allows these options to be tuned.
The above results are for the best performing choices, details
of which are included underneath each column. The bottom
graph in Figure 3 shows the how the performance varies
with such choices (noting the log scale). When we set
VVL to some value greater than one, we are introducing
explicit vectorization by presenting grid-level parallelism
at the innermost level. Conversely, when we set VVL=1,
then we revert to the naı̈ve case where we have no explicit
vectorization, and the compiler instead generates vector

Prepared using sagej.cls

Gray and Stratford 7

0"

100"

200"

300"

400"

500"

600"

700"

Intel"Ivy1
bridge"121
core"CPU"

Intel"Haswell"
81core"CPU"

AMD"
Interlagos"
161core"CPU"

Intel"Xeon"
Phi""

NVIDIA"K20X"
GPU"

NVIDIA"K40"
GPU"

!m
e$
(s
)$

Full$Ludwig$Liquid$Crystal$128x128x128$Test$Case$$

Ludwig"Remainder"
Advect."Bound."
AdvecPon"
LC"Update"
Chemical"Stress"
Order"Par."Grad."
Collision"
PropagaPon"

!!AoS,!!
VVL=4!

!!AoS,!!
VVL=1!

!!AoS,!!
VVL=1!

AoSoA,!!
VVL=8!

!!SoA,!!
VVL=1!

!!SoA,!!
VVL=1!

Best!!
Config:!

"
""
"

"
""
"

"
""
" 0"

100"

200"

300"

400"

500"

600"

700"

Intel"Ivy1
bridge"121
core"CPU"

Intel"Haswell"
81core"CPU"

AMD"
Interlagos"
161core"CPU"

Intel"Xeon"
Phi""

NVIDIA"K20X"
GPU"

NVIDIA"K40"
GPU"

!m
e$
(s
)$

Full$MILC$Conjugate$Gradient$64x64x32x8$Test$Case$$

MILC"Remainder"

ShiN"

Scalar"Mult."Add"

Insert"

Insert"&"Mult."

Extract"&"Mult."

Extract"

AoSoA,%%
VVL=4%

%%AoS,%%
VVL=1%

%%AoS,%%
VVL=1%

AoSoA,%%
VVL=8%

%%SoA,%%
VVL=1%

%%SoA,%%
VVL=1%

Best%%
Config:%

"
""
"

"
""
"

"
""
"

1"

10"

100"

1000"

10000"

Ivy
'Br
idg
e"

Ha
sw
ell
"

Int
erl
ag
os
"

Xe
on
"Ph
i"

K2
0X
"

K4
0"

Ivy
'Br
idg
e"

Ha
sw
ell
"

Int
erl
ag
os
"

Xe
on
"Ph
i"

K2
0X
"

K4
0"

!m
e$
(s
)$

VVL=1,AoS"

VVL=1,"SoA"

VVL=N,"AoS"

VVL=N,"SoA"

VVL=N,"AoSoA"

Ludwig" MILC"
Figure 3. The time taken by the full Ludwig Liquid Crystal (top left) and MILC (top right) test cases on CPU, GPU and Xeon Phi
architectures, where timings are decomposed into the different parts of the code. The same targetDP source code is used in each
case and the best data layout and explicit vectorization configuration settings are shown, where variation across these options is
shown in the bottom graph.

0"

20"

40"

60"

80"

100"

120"

140"

Pro
pa
ga
.o
n"(
0.0
0)"

Co
llis
ion
"(1
.08
)"

Or
de
r"P
ar.
"Gr
ad
."(0
.15
)"

Ch
em
ica
l"S
tre
ss"
(2.
97
)"

LC
"Up
da
te"
(0.
79
)"

Ad
ve
c.
on
"(0
.13
)"

Ad
ve
ct.
"Bo
un
d."
(0.
05
)"

Ex
tra
ct"
(0.
07
)"

Ex
tra
ct"
an
d"M

ult
."(0
.38
)"

Ins
ert
"an
d"M

ult
."(0
.38
)"

Ins
ert
"(0
.10
)"

Sca
lar
"M
ult
."A
dd
"(0
.07
)"

Sh
iN"
(0.
00
)"

Pe
rc
en

ta
ge
)o
f)S

TR
EA

M
)

Intel"IvyPbridge"(Es.mated)" Intel"Xeon"Phi"(Es.mated)" NVIDIA"K40"GPU"(Actual)"

Ludwig" MILC"
Figure 4. The memory bandwidth obtained by each Ludwig and MILC kernel, presented as a percentage of that obtained by the
STREAM triad benchmark, across CPU, Xeon Phi and GPU architectures. For the application kernels, the GPU results are
obtained using the NVIDIA profiler, and the other results are estimated from these using ratios of kernel time results to scale. The
operational intensity of each kernel is given in brackets after the kernel name.

instructions, where possible, from the operations conducted
on each grid point. For the CPU and Xeon Phi architectures,
results are included for VVL=N, where, in double precision,
N is naturally 4 for CPU and 8 for Xeon Phi given the
instructions supported by these architectures (256-bit AVX
and 512-bit IMCI respectively). It can be seen for the CPU
results that there is no dramatic advantage from such explicit
vectorisation: the compiler can typically do a reasonable

job of finding vectorization implicitly. For the Xeon Phi,
however, it is very clear that explicit vectorization is required
to get optimal performance, otherwise the degradation
is several-fold. Note that 512-bit instructions will soon
propagate into future “traditional” CPU technologies, so
these results indicate that such explicit vectorization will
soon be vital across all modern CPUs. The use of a data
layout which does not match the architecture-specific access

Prepared using sagej.cls

8

pattern can be very detrimental. For example, for the MILC
Xeon Phi VVL=8 case, use of the SoA layout results in
a dramatic 5-fold slowdown overall relative to the natural
AoSoA layout (and the slowdown for AoS is more modest
but still significant at 12%). GPUs clearly perform best with
SoA data layout (which permits memory coalescing); the
wrong layout can have dramatic effects, e.g. the MILC case
is 7-fold slower with AoS. It is known that in some cases,
it can be beneficial to include explicit vectorization in GPU
kernels (Volkov 2010), but we do not find any advantage in
doing so for the test cases presented in this paper. Overall,
it is clear that the specific configuration is important for
performance, and the flexibility offered by our model allows
the user to experiment to find the best options on any specific
architecture.

A standard methodology for comparing observed per-
formance to the capability of the hardware involves the
“Roofline” model as given in (Williams et al. 2009). This
uses the concept of “Operational Intensity” (OI): the ratio
of operations (in this case double precision floating point
operations) to bytes accessed from main memory. The OI,
in Flops/Byte, can be calculated for each computational
kernel. A similar measure (also given in Flops/Byte), exists
for each processor: the ratio of peak operations per second
to the memory bandwidth of the processor. This quantity,
which gives a measure of the balance of the processor, is
known as the “ridge point” in the Roofline model. Any kernel
which has an OI lower than the ridge point is limited by the
memory bandwidth of the processor, and any which has an
OI higher than the ridge point is limited by the processor’s
floating point capability. Table 1 gives peak performance
values for each processor, together with memory bandwidth
measurements obtained through the standard STREAM triad
benchmark (McCalpin 1995). Dividing the former by the
latter, the ridge points for the Ivy-bridge, Xeon Phi and K40
processors are determined as 5.2, 6.4 and 7.4 Flops/Byte
respectively.

The numbers given in brackets after each kernel name in
Figure 4 give the OI for that kernel. Since all of these are
significantly lower than the ridge point values, the Roofline
model tells us that the limiting factor is memory bandwidth
(rather than floating point capability) without exception.
This means that a reasonable method to assess performance
portability is to simply to compare the memory bandwidth
obtained by each kernel to that obtained by STREAM, on
each architecture. Note that STREAM does not report peak
bandwidth, but gives an indication of what is practically
achievable in a well-performing case, so it is possible for
kernels to slightly outperform STREAM.

Figure 4 shows the memory bandwidth of each kernel
expressed as a percentage of STREAM. For real, complex
applications, it is over-ambitious to expect 100% across
all kernels. The performance will depend on the specific
complexities of each kernel, but it is clear that, for a
well-performing code, most kernels should be achieving
a reasonable percentage of STREAM bandwidth. First
considering the K40 GPU results in the Figure, it can be
seen that all kernels are near 100%, except for “Chemical
Stress”. Further investigation reveals that this kernel achieves
relatively low occupancy on the GPU because of the
register usage required by each thread in efficiently storing

Titan ARCHER
Location Oak Ridge University of

National Laboratory Edinburgh
Product Cray XK7 Cray XC30

Per Node One Interlagos & Two Ivy-Bridge
one K20X

Nodes 18,688 4,920
Interconnect Cray Gemini Cray Aries

Table 2. Technical details of the supercomputers used in the
scaling analysis. See Table 1 for details of the processors.

temporary structures. Future work will attempt to redesign
the kernel at the algorithmic level with the aim of improving
performance across all architectures.

We derive estimates of corresponding bandwidths on the
Ivy-bridge and Xeon Phi using the measured K40 bandwidth
results scaled by ratios of timing results (due to the lack
of appropriate tools, on the platforms in use, that can
provide the necessary kernel-level information). These are
only estimates because they assume that the same amount
of data is being loaded from main memory across the three
architectures, which may be an oversimplification due to
differing caching architectures and policies, but nevertheless
give us useful indications. The CPU and Xeon Phi results are
seen to lack the consistency of the GPU results, more so for
Ludwig (for which the kernels are typically more complex)
than MILC. Our estimation technique may play a role in this
variability, but is is also possible that the GPU architecture,
designed for data throughput, is more effective in achieving
good bandwidth for such real applications. Nevertheless, for
the CPU, we see 60% or higher of STREAM bandwidth for
all but two kernels. The variability for the Xeon Phi is higher,
but this is not surprising since the current product is known
to have architectural limitations which are being addressed
by a complete re-design for the next-generation “Knights
Landing” product. Since we are already carefully tuning the
data layout and corresponding access patterns, it is not clear
that there are any major improvements which could be made
to the application kernels, but it is possible that tuning of
more subtle system settings may be advantageous and we
will explore this in future work. Intel quote 80GB/s (around
50% of STREAM) as a threshold on the current Xeon Phi,
above which memory bandwidth can be considered as being
good (Cepeda, Shannon 2012), and we are achieving this for
9 of our 13 kernels.

5 Scaling

In this paper we have presented our targetDP model, and
demonstrated its effectiveness in allowing the same appli-
cation source code to perform well across modern archi-
tectures. The model is relevant for intra-node parallelism,
so for use on multi-node systems it must be combined
with a higher-level paradigm. Both the applications we have
presented use MPI for inter-node communications. In this
section, we analyse the performance of our MPI+targetDP
applications at scale.

For this analysis we use the Titan and ARCHER
supercomputers, for which details are given in Table 2. On
each node, Titan has one 16-core Interlagos CPU and one
K20X GPU, whereas ARCHER has two 12-core Ivy-bridge

Prepared using sagej.cls

Gray and Stratford 9

0.1$

1$

10$

100$

1000$

1$ 10$ 100$ 1000$

!m
e$
(s
)$

nodes$

Ludwig$Liquid$Crystal:$128x128x128$

Titan$CPU$$
(One$161core$Interlagospernode)$$$

TitanCPUIdeal$Scaling$

Archer$CPU$$
(Two$121core$Ivy1bridgepernode)$

ARCHERCPUIdeal$Scaling$

Titan$GPU$$
(One$K20X$per$node)$

TitanGPUIdeal$Scaling$

1"

10"

100"

1000"

100" 1000" 10000"

!m
e$
(s
)$

nodes$

Ludwig$Liquid$Crystal:$1024x1024x512$
Titan"CPU""
(One"160core"Interlagos"per"node)"""

Titan"CPU"Ideal"Scaling"

Archer"CPU""
(Two"120core"Ivy0bridge"per"node)"

ARCHER"CPU"Ideal"Scaling"

Titan"GPU"
"(One"K20"per"node)"

Titan"GPU"Ideal"Scaling"

0.1$

1$

10$

100$

1000$

1$ 10$ 100$ 1000$

!m
e$
(s
)$

nodes$

MILC$Conjugate$Gradient:$64x64x32x8$

Titan$CPU$$
(one$161core$Interlagospernode)$

TitanCPUIdeal$Scaling$

Archer$CPU$$
(two$121core$Ivy1bridgepernode)$

ARCHERCPUIdeal$Scaling$

Titan$GPU$$
(one$K20X$per$node)$

TitanGPUIdeal$Scaling$

0.1$

1$

10$

100$

1000$

1$ 10$ 100$ 1000$

!m
e$
(s
)$

nodes$

Ludwig$Liquid$Crystal:$128x128x128$

Titan$CPU$$
(One$161core$Interlagospernode)$$$

TitanCPUIdeal$Scaling$

Archer$CPU$$
(Two$121core$Ivy1bridgepernode)$

ARCHERCPUIdeal$Scaling$

Titan$GPU$$
(One$K20X$per$node)$

TitanGPUIdeal$Scaling$

1"

10"

100"

1000"

10" 100" 1000" 10000"

!m
e$
(s
)$

nodes$

MILC$Conjugate$Gradient:$64x64x64x192$

Titan"CPU""
(one"160core"Interlagos"per"node)"

Titan"CPU"Ideal"Scaling"

Archer"CPU"
(two"120core"Ivy0bridge"per"node)"

ARCHER"CPU"Ideal"Scaling"

Titan"GPU""
(one"K20X"per"node)"

Titan"GPU"Ideal"Scaling"

Figure 5. The strong scaling, on Titan and ARCHER, of Ludwig (top) and MILC (bottom) for small (left) and large (right) problem
sizes. For ARCHER, both CPUs are used per node. For Titan, we include results with and without GPU utilization.

CPUs. In this section, we evaluate on a node-by-node basis.
For Titan, a single MPI task per node, operating on the CPU,
is used to drive the GPU on that node. We also include,
for Titan, results just using the CPU on each node without
any involvement from the GPU, for comparison. This means
that, on a single node, our Titan results will be the same as
those K20X and Interlagos results presented in the previous
section (for the same test case). On ARCHER, however, we
fully utilize both the processors per node: to do this we use
two MPI tasks per node, each with 12 OpenMP threads (via
targetDP). So the single node results for ARCHER are twice
as fast as those Ivy-bridge single-processor results presented
in the previous section. Note that targetDP has no capability
to decompose data parallel operations across both CPUs and
GPUs within a single run. The advantage of this would be
minimal, compared to sole use of the GPU, even if good load
balancing was achieved, since the memory bandwidth on the
GPU is so much higher than the CPU, so we do not believe
it is worth the substantial complexity that would be required.
Similar to the previous section, we run for 1000 timesteps
or iterations and, since these runs are across multiple nodes
on a shared system, we reduce the effects of any interference
from other jobs by performing each run several times and
select the minimum timing result.

In Figure 5, we show strong scaling, for two different
problem sizes, for both Ludwig and MILC. The small
problem sizes on the left are those which were used in
our single-processor analysis in the previous section. The
problem sizes on the right are chosen to be representative
of current problems requiring HPC. For each, we see how

the time to solution deceases as we increase the number of
nodes.

For the small problem cases, on the CPUs, the scaling
is seen to be excellent up to around 32 nodes. After
that point, the local problem size becomes too small and
communication dominates. For the GPU case, strong scaling
is still observed up to this point (i.e. the time to solution
continues to decrease), but the scaling is seen to deviate from
the ideal case. At low node counts the single GPU per node
on Titan outperforms the two CPUs per node on ARCHER,
but there is a crossover point (around 32 nodes) after which
the ARCHER performance is better.

This behaviour is expected to be attributable to the
extra data transfers across the PCI-express bus necessary
when exchanging halo data between GPUs (via the host
CPUs). We expect that hardware improvements in future
systems will reduce these overheads: most notably the
introduction of the higher bandwidth and lower latency
NVLINK as a high performing replacement for PCI-express
in future NVIDIA models (NVIDIA Whitepaper 2014).
There are also potential improvements in software through
use of CUDA-aware MPI, which should reduce overheads
through removal of unnecessary data buffering and CPU
involvement. There already exists such a library on Titan,
but it still lacks maturity and is not used here because of
incompatibilities with the specific communication patterns
used in these applications.

For the larger problem sizes, there exists a minimum
number of nodes for which the problem can fit into total
memory: 256 nodes for Ludwig and 64 nodes for MILC (i.e.

Prepared using sagej.cls

10

the Ludwig problem size is larger). It can be seen that the
behaviour is similar, with the crossover point dependent on
the problem size, occurring at around 512 nodes for Ludwig
and 256 nodes for MILC.

Overall, these results confirm that targetDP can be
combined effectively with MPI for use on large-scale
supercomputers for these types of problem.

6 Conclusions

Large-scale HPC systems are increasingly reliant on highly
parallel processors such as NVIDIA GPUs and Intel
Xeon Phi many-core CPUs to deliver performance. It is
unsustainable for the programmer to write separate code
for each of these different architectures (and also traditional
CPUs). In this paper we presented a pragmatic solution
to this problem, for grid-based applications. The targetDP
model consists of a very lightweight framework, which
abstracts either OpenMP (for multi-core or many-core
CPUs) or CUDA (for NVIDIA GPUs), whilst allowing
good vectorization on the former. We showed that use
of this approach can achieve real performance portability
across the architectures for complex applications, and that
it can effectively be combined with MPI for use on large
supercomputers. An important finding is that the explicit
vectorization capabilities of the model are vital in order to
make efficient use of the current Xeon Phi processors which
feature 512-bit SIMD units, and are expected also be vital on
imminent mainstream CPU products, for which the width of
the vector instruction will increase to this size.

Our work, for which the software is open source
and freely available (Gray and Stratford 2016), has so
far been limited to structured grid applications, but the
model or ideas may well be of interest more widely.
The main architecture that we have not yet addressed is
the AMD GPU, which we should be able to target in a
straightforward manner through development of an OpenCL
implementation of targetDP (that largely mirrors the CUDA
implementation). It should be similarly straightforward to
create Fortran implementations (for the key architectures
discussed in this paper) to support the many HPC grid-based
applications written in that language. We also look forward
to imminent hardware advances from Intel and NVIDIA:
the next generation Xeon Phi and GPU products will
both exploit high-bandwidth stacked memory, which should
significantly boost performance of our memory-bandwidth
bound applications. Furthermore, the new low latency
and high bandwidth NVLINK CPU to GPU interconnect
promises to reduce the communication overheads in strong
scaling on GPU systems.

Acknowledgments

AG acknowledges support embedded CSE programme
of the ARCHER UK National Supercomputing Service
(http://www.archer.ac.uk) and the European Union funded
PRACE programme. KS acknowledges support from United
Kingdom EPSRC grant EP/J007404. This research used
resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy

under Contract No. DE-AC05-00OR22725, and the United
Kingdom EPSRC funded ARCHER service. We thank
Daniel Holmes and Arno Proeme for providing constructive
feedback on this paper.

References

Bauer, M., Treichler, S., Slaughter, E., and Aiken, A. (2012).
Legion: Expressing locality and independence with
logical regions. In Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 66:1–66:11, Los
Alamitos, CA, USA. IEEE Computer Society Press.
http://dl.acm.org/citation.cfm?id=2388996.2389086.

Beris, A. N. and Edwards, B. J. (1994). Thermodynamics of flowing
systems: with internal microstructure.

Bull, M. (2013). PRACE 2IP D7.4, Unified European Application
Benchmark Suite. http://www.prace-ri.eu/ueabs/.

Cepeda, Shannon (2012). Optimization and performance
tuning for intel xeon phi coprocessors, part 2.
https://software.intel.com/en-us/articles.

Davies, C. T., Follana, E., Gray, A., Lepage, G., Mason, Q.,
Nobes, M., Shigemitsu, J., Trottier, H., Wingate, M., Aubin, C.,
et al. (2004). High-precision lattice qcd confronts experiment.
Physical Review Letters, 92(2):022001.

de Gennes, P. and Prost, J. (1995). The physics of liquid crystals.
Number 83. Oxford University Press (Clarendon).

Desplat, J.-C., Pagonabarraga, I., and Bladon, P. (2001). LUDWIG:
A parallel Lattice-Boltzmann code for complex fluids.
Computer Physics Communications, 134(3):273–290.

Edwards, H. C., Sunderland, D., Porter, V., Amsler, C., and
Mish, S. (2012). Manycore performance-portability: Kokkos
multidimensional array library. Scientific Programming,
20(2):89–114.

Gray, A., Hart, A., Henrich, O., and Stratford, K. (2015). Scaling
soft matter physics to thousands of graphics processing units
in parallel. International Journal of High Performance
Computing Applications, page 1094342015576848.

Gray, A., Hart, A., Richardson, A., and Stratford, K. (2012). Lattice
Boltzmann for Large-Scale GPU Systems, pages 167–174.
Advances in Parallel Computing. IOS Press.

Gray, A. and Stratford, K. (2013). Ludwig: multiple GPUs for
a complex fluid lattice Boltzmann application. Chapman and
Hall/CRC.

Gray, A. and Stratford, K. (2014). targetDP: an Abstraction of
Lattice Based Parallelism with Portable Performance. In High
Performance Computing and Communications, 2014, pages
312–315. IEEE.

Gray, A. and Stratford, K. (2016). targetDP Web page.
http://ludwig.epcc.ed.ac.uk/targetdp.

Harris, M. (2016). HEMI Web Page. github.com/harrism/hemi.
Henrich, O., Stratford, K., Coveney, P. V., Cates, M. E., and

Marenduzzo, D. (2013). Rheology of cubic blue phases. Soft
Matter, 9(43):10243–10256.

Hornung, R., Keasler, J., et al. (2014). The RAJA portability
layer: overview and status. Lawrence Livermore National
Laboratory, Livermore, USA.

Khronos OpenCL Working Group (2015). OpenCL Specification.
Version 2.1. https://www.khronos.org/opencl.

Prepared using sagej.cls

Gray and Stratford 11

Khronos OpenCL Working Group - SYCL Subgroup (2015). SYCL
Specification. Version 1.2. https://www.khronos.org/sycl.

McCalpin, J. D. (1995). Memory bandwidth and machine balance
in current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19–25.

McIntosh-Smith, S., Boulton, M., Curran, D., and Price, J. (2014).
On the performance portability of structured grid codes on
many-core computer architectures. In Supercomputing, pages
53–75. Springer.

Medina, D. S., St-Cyr, A., and Warburton, T. (2014). Occa: A
unified approach to multi-threading languages. arXiv preprint
arXiv:1403.0968.

NVIDIA Whitepaper (2014). NVIDIA NVLink
High-Speed Interconnect: Application Performance.
http://www.nvidia.com/object/nvlink.html.

OpenMP Architecture Review Board (2015). OpenMP application
program interface version 4.5. http://openmp.org/wp/openmp-
specifications/.

Slaughter, E., Lee, W., Treichler, S., Bauer, M., and Aiken, A.
(2015). Regent: a high-productivity programming language for
hpc with logical regions. In Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, page 81. ACM.

Steuwer, M., Fensch, C., Lindley, S., and Dubach, C. (2015).
Generating performance portable code using rewrite rules:
from high-level functional expressions to high-performance
OpenCL code. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, pages
205–217. ACM.

Stratford, K., Gray, A., and Lintuvuori, J. (2015). Large colloids
in cholesteric liquid crystals. Journal of Statistical Physics,
161(6):1496–1507.

Succi, S. (2001). The lattice Boltzmann equation: for fluid dynamics
and beyond. Oxford university press.

The MILC Collaboration (2014). The MILC Code manual.
http://www.physics.utah.edu/ detar/milc/.

The OpenACC Standard Committee (2015). The Ope-
nACC Application Programming Interface Version 2.5.
http://www.openacc.org/.

Tiribocchi, A., Henrich, O., Lintuvuori, J., and Marenduzzo, D.
(2014). Switching hydrodynamics in liquid crystal devices: a
simulation perspective. Soft matter, 10(26):4580–4592.

Volkov, V. (2010). Better performance at lower occupancy.
In Proceedings of the GPU Technology Conference, GTC,
volume 10. San Jose, CA.

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline:
an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76.

Prepared using sagej.cls

