
 1

Reducing the runtime and improving

the ease-of-use and portability of the

COSA 3D harmonic balance Navier-

Stokes solver for open rotor unsteady

aerodynamics

Document Title: Technical Report

Authorship: Adrian Jackson

Date: 20th January 2017

Version: 1.0

 2

Table of Contents

Table of Contents ... 2

1 Introduction .. 3

2 Simulation Functionality .. 4

3 Initial performance ... 4

3.1 Process Counts ... 5

3.2 Basic performance ... 6

3.3 Load balance performance ... 7

3.3.1 Profiling data .. 7

4 WP1 Parallel multi-frequency periodicity boundary conditions (MFPBCs) 8

5 WP2 I/O re-parallelisation and standardisation ... 10

5.1 I/O Functionality .. 11

5.2 I/O Optimisation .. 14

5.3 Restructured I/O ... 17

5.4 I/O Standardisation .. 19

5.4.1 CGNS ... 19

5.4.2 Tecplot ... 21

6 WP3 Improvement of MPI communications ... 22

6.1 Dynamic allocation .. 23

7 WP4 Dynamic load balancing ... 24

7.1 Load Balancing Optimisation .. 24

7.1.1 Communication costs ... 26

7.1.2 Load balancing performance.. 27

7.1.3 Compute node usage .. 27

7.1.4 Communication cost decomposition performance 28

8 WP5 Serial Improvements ... 29

9 Summary .. 29

10 Future Work ... 30

11 Appendix A .. 30

11.1 16384 block input file header: ... 30

11.2 800 block input file header .. 32

11.3 256 block unbalanced decomposition input file header 33

 3

1 Introduction
This project aimed at substantially improving:

1. the computational performance (reducing runtimes while improving parallel

scalability from small to very high core counts)

2. ease-of-use and portability (adopting portable I/O standards)

of the COSA harmonic balance (HB) Navier-Stokes (NS) computational fluid

dynamics solver, the key tool of the COSA finite volume compressible NS Fortran

code.

COSA is used for accurate unsteady aerodynamic analysis of fluid flows and

fluid/structure interaction problems (e.g. flow-induced structural vibrations) in

renewable energy, mechanical and aeronautical engineering.

COSA is being developed for a wide class of low-, high- and multi-speed flows, with

strong emphasis on open rotor unsteady aerodynamics. The HB method is a nonlinear

frequency-domain technique that reduces the runtime for calculating periodic

solutions of ordinary differential equations with respect to the conventional time-

marching approach.

The reduction occurs because the HB method, unlike the conventional time-domain

approach, determines directly the periodic solution of interest, bypassing lengthy

transient effects. In aerodynamic performance, structural integrity and aero-acoustic

assessments, the use of the HB NS technology rather than the conventional time-

domain (TD) NS method to accurately determine periodic flows of turbomachinery

blade rows, vibrating aircraft wings, and helicopter rotors was shown to reduce

runtimes by one to two orders of magnitude.

In the case of bladed rotors, the HB speed-up is particularly high due to the possibility

of using multi-frequency periodicity boundary conditions enabling the modelling of

flow past a single blade rather than the whole rotor. The HB NS COSA solver is

pioneering the development and exploitation of this technology in wind turbine (WT)

engineering worldwide.

COSA is a structured multi-block NS code featuring a steady, a TD and a HB solver,

all using a finite volume space-discretisation and an efficient multigrid integration.

All three solvers are parallelised using MPI.

In this project, the speed of the HB solver has been substantially increased by

developing and parallelising multi-frequency periodicity boundary conditions into

COSA. The resulting additional speed-up with respect to the existing implementation

equals the number of rotor blades (3 to 20, depending on the application).

To improve the code ease-of-use without damaging parallel scalability, a dynamic

parallel load-balancing capability has been developed, ensuring the number of grid

blocks (geometric partitions) assigned to each MPI process takes into account block

size, enabling the MPI processes to use different numbers of blocks to ensure a

comparable amount of work for all processes. This simplifies and accelerates the grid

generation phase, presently constrained by the requirement for all blocks having equal

size, as the original code allocates equal numbers of blocks to MPI processes (or as

 4

equal as possible depending on the number of blocks in the simulation and the

number of processes used).

The scalability of the parallel I/O in the original code is limited, and the I/O wall-

clock time is a significant portion of the overall runtime for the large core counts

required for complex 3D simulations. To achieve a scalability of the I/O operations

comparable to that of the computing part, the code I/O has been restructured and re-

parallelized making more efficient use of MPI I/O routines.

Furthermore, we have investigated increased MPI communication performance by

overlapping communications with computations, and we have optimised the serial

performance by addressing vectorisation issues.

The ease-of-use and portability of the code has be addressed by creating tools to

convert the existing I/O format used in the code to other CFD I/O standards, such as

CGNS and TecPlot I/O. We investigated writing these formats directly from the

simulation code, but the performance of these libraries proved not to be adequate, so

this functionality has been retained as external tools for the time being.

The rest of this document will describe COSA in more detail and characterise its

existing performance (Sections 2 and 3). We then go on to discuss the technical work

undertaken in more detail (Sections 4 to 7) and finally summarise the overall

functionality and improvement that has been achieved in the project in Section 8.

2 Simulation Functionality
COSA supports steady, time-domain (TD), and frequency-domain (harmonic balance

or HB) solvers, implementing the numerical solution of the Navier-Stokes (NS)

equations using a finite volume space-discretisation and multigrid (MG) integration.

It is implemented in Fortran and has been parallelised using MPI, with each MPI

process working on a set of grid blocks (geometric partitions) of the simulation.

In the HB solver there exists an additional dimension with respect to the steady and

TD solvers, which can be viewed as a harmonic varying from 1 to Nh, a user specified

number of elemental flow harmonics. However, the code solve directly such

elemental harmonics, but rather Nh equally time-spaced snapshots of the required

periodic flow field, linked to the Nh elemental harmonics using a Fourier transform.

The code is structured so that the core computational kernels can, for the most part, be

reused for the steady solvers and HB simulations, with HB simply requiring an outer

loop over the Nh snapshots using the steady solver kernels. The other main difference

between the HB and the steady solver is that all large arrays (e.g. solution and residual

at all grid cells) of the HB solver have an additional dimension over harmonics.

3 Initial performance
Prior to any optimisation work it’s important to understand the current performance of

the code. In this section we aim to capture the performance and scaling of COSA on

a representative simulation, and evaluate where performance problems exist. The

 5

simulation parameters (COSA input files) used to collect the performance results

presented in this report is included in Appendix A at the end of the report.

We have performed simulations using 2 different simulations, both harmonic balance,

one with 800 blocks and 3,689,952 grid cell (NREL5MW_GRID32_HB_SECTOR),

the other with 16,384 blocks and 47,071,232 grid cells

(NACA0015_HB_plu_mb16384).

We use a further simulation (NACA0015_Ogrid_UNBALANCED) to test the load

balancing functionality and performance issues investigated during this project. This

has 256 blocks and 951,808 grid cells, and there are two different versions, one where

blocks have been carefully constructed to ensure they have similar numbers of grid

cells, and the other where the block sizes are taken directly from a mesh generation

package. In the unbalanced grid (where block sizes are taken directly from the mesh

generator) there is around a 7x difference in number of cells between large and small

blocks.

All benchmark data in this document was collected using a version of COSA

compiled with the Intel compiler (version 15.0.2.164) on ARCHER using mkl

(version 11.2.2). Benchmarks are run using a Lustre stripe count of -1 for the

directories each simulation is run from.

For benchmarking data we have run each benchmark 3 times and present the fastest

run in the graphs. For all the collected data there was a less than 5% difference

between the fastest and slowest runs, so data variability (error bars) are omitted from

the graphs.

3.1 Process Counts

Given the MPI decomposition functionality in COSA is designed to distribute blocks

across processes as evenly as possible the following is a list of sensible process counts

for both sample simulations

• 256 ����	
: 32, 64, 128, 256

• 800 ����	
: 20, 40, 80, 100, 200, 400, 800

• 16384 ����	
: 1024, 2048, 4096, 8192, 16384

The 256 and 800 block simulation will run on a single node of ARCHER, the 16384

block simulation is too large to fit into memory on a single node so we have started

our benchmarking from 1024 cores (43 nodes).

 6

3.2 Basic performance

Figure 1: Runtime for 100 iterations of 16,384 block simulation, with and without output I/O

enabled.

Figure 2: Runtime for 100 iterations of 800 block simulation, with and without output I/O

enabled.

It is evident from Figure 1 and Figure 2 that COSA scales very well, even up to

maximum block counts, when output I/O is disabled (writing check-pointing and data

files). However, especially for the large test case, it is evident that I/O really

dominates performance, and even for the smaller simulation the I/O is costing around

40% of the runtime for the highest core counts.

It should be noted that we have only run for small numbers of iterations of the

algorithm for these benchmark cases, meaning I/O output will have a larger impact of

performance than when a normal simulation is run (where thousands or tens of

thousands of iterations are used). However, it does illustrate the issue with I/O in

these simulations.

10

100

1000

1000 10000

R
u

n
ti

m
e
 (

se
co

n
d

s)

Number of cores

Original code

Ideal

Original code (no I/O)

Ideal (no I/O)

10

100

1000

10000

10 100 1000

R
u

n
ti

m
e
 (

se
co

n
d

s)

Number of cores

Original code

Ideal

Original code (no I/O)

Ideal (no I/O)

 7

3.3 Load balance performance

Part of this project is to investigate and optimise the load balance of the domain

decomposition approach used. Therefore, we have also benchmarked the code using

a simulation (NACA0015_Ogrid_UNBALANCED) where load balance is an issue.

The simulation is run using the standard decomposition strategy in COSA, which

aims to give an equal (or as close to equal as possible) number of blocks to each MPI

process. The blocks are pre-defined in the input file.

Figure 3 outlines the parallel performance of this simulation alongside the ideal curve

(which is calculated taking the time on 32 cores and dividing the runtime by 2 every

time the number of cores doubles). It is evident from the graph that there is a

significant loss of parallel performance when running with an unbalance

decomposition.

Figure 3: Runtime for 1000 iterations of 256 unbalanced block simulation, with output I/O

enabled.

3.3.1 Profiling data

Investigations of the detailed performance of COSA were undertaken with CrayPat to

identify the subroutines consuming the most computational time for a given run, the

amount of MPI communications performed, and the time spent in I/O for the same

run.

Profiling result for the small test case:

100 processes
 Samp% | Samp | Imb. | Imb. |Group

 | | Samp | Samp% | Function

 | | | | PE=HIDE

 100.0% | 61,775.2 | -- | -- |Total

|--

| 78.1% | 48,217.5 | -- | -- |USER

||---

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

R
u

n
ti

m
e
 (

se
co

n
d

s)

Process Count

Simple Decomposition

Simple Ideal

 8

|| 19.0% | 11,747.3 | 3,485.7 | 23.1% |vflux_

|| 8.8% | 5,418.5 | 857.5 | 13.8% |roflux_

|| 6.1% | 3,764.0 | 1,434.0 | 27.9% |muscl_

|| 4.7% | 2,909.9 | 1,479.1 | 34.0% |q_face_

|| 4.1% | 2,555.1 | 364.9 | 12.6% |tridi_

|| 3.9% | 2,380.3 | 1,327.7 | 36.2% |bresid_

|| 3.7% | 2,302.4 | 1,445.6 | 39.0% |muscl_bi_

|| 3.2% | 1,972.9 | 1,146.1 | 37.1% |rtst_

||===

| 19.0% | 11,742.3 | -- | -- |MPI

||---

|| 11.1% | 6,831.8 | 33,844.2 | 84.0% |mpi_waitany

|| 5.3% | 3,262.0 | 910.0 | 22.0% |MPI_FILE_WRITE

|==

800 processes
 Samp% | Samp | Imb. | Imb. |Group

 | | Samp | Samp% | Function

 | | | | PE=HIDE

 100.0% | 10,461.0 | -- | -- |Total

|---

| 56.3% | 5,889.8 | -- | -- |USER

||--

|| 13.1% | 1,375.1 | 464.9 | 25.3% |vflux_

|| 6.5% | 683.7 | 132.3 | 16.2% |roflux_

|| 4.5% | 469.1 | 199.9 | 29.9% |muscl_

|| 3.4% | 355.9 | 192.1 | 35.1% |q_face_

|| 3.1% | 320.7 | 82.3 | 20.4% |tridi_

|| 2.8% | 293.7 | 193.3 | 39.7% |bresid_

||==

| 41.4% | 4,333.4 | -- | -- |MPI

||--

|| 14.2% | 1,482.2 | 1,111.8 | 42.9% |MPI_FILE_WRITE

|| 10.5% | 1,093.8 | 4,369.2 | 80.1% |mpi_waitany

|| 8.4% | 877.7 | 885.3 | 50.3% |mpi_file_open

|| 7.0% | 730.0 | 802.0 | 52.4% |MPI_BARRIER

|===

4 WP1 Parallel multi-frequency periodicity boundary
conditions (MFPBCs)

Milestone: the HB runtime analysis of rotor flows will be reduced by a factor Nb. This will be

verified by comparing the runtime of the HB analysis of the provided test case using the

complete rotor grid without MFPBCs and that using a single grid sector with MFPBCs.

Theoretically, multi-frequency periodic boundary conditions (MFPBCs) reduce

runtimes of the HB analysis of rotor flows by a factor equal to the number of rotor

blades Nb. For some particular applications when the flow field is periodic, it is

 9

sufficient to simulate the flow only within one repeating region of the whole

computational domain.

The interaction of repeating region with the remaining physical domain is provided

through the periodic boundary conditions. We focus on rotational periodicity, where

one periodic boundary is transformed into the other periodic boundary by the

coordinate rotation. Figure 4 represents one repeating region or sector, which depicts

two rotationally periodic boundaries, (boundary 1 and boundary 2), where θ is the

rotation angle between these two periodic boundaries, and Ω is constant angular

velocity given.

Figure 4: Rotational periodic boundaries

For this work, we have assumed that the rotational axis coincides with the z-axis, and

all grid nodes are matching. The data exchange between two periodic blocks is done

across the patches on the block surfaces, and it follows exactly the same principle that

involves cut boundary condition.

Steady periodicity boundary conditions depend only on the rotation of the coordinate

system, means that all scalar quantities (density, pressure, turbulent kinetic energy,

and specific dissipation rate) are invariant with respect to the coordinate rotation.

When such variables are copied from the interior domain of first block to halo cells

(parts of the data arrays used to store boundary data) in the second block and vice

versa, they remain unchanged.

Moreover, all vector quantities (velocity or gradients of scalars) need to be

transformed when data exchange between two periodic blocks takes place. The

rotation matrix of transformation is the following:

 10

Periodic flows in turbomachinery applications satisfy a certain spatial periodicity in

addition to temporal periodicity, meaning that the flow about one blade is the same as

the flow about neighbouring blade with a time shift. These boundary conditions must

be applied in the frequency-domain.

These MFPBC have been implemented in COSA, and benchmarked against running

the same simulations without such boundary conditions (where the full domain has to

be simulated rather than one rotor).

5 WP2 I/O re-parallelisation and standardisation

Milestone: the standardised parallel I/O functionality of COSA will have a parallel

scalability comparable to that of the computing part of the code. This will be assessed by

repeating all I/O scalability tests …, and verifying that the mean deviation of the new I/O-

only scalability curve from the ideal speed-up curve is of the same order of magnitude as that

of the computation-only curve.

The current I/O functionality in COSA is parallel, at least on output, with a restart file

produced periodically (for checkpoint and restart purposed) and data (also known as

flowtec) files produced at the end of the simulation (along with a handful of other

smaller files).

These output files are write on a per-block basis, with data from consecutively

ordered blocks being adjacent in the files. As such, each process can write its blocks

to different parts of the output file (be it restart or flowtec) in parallel without

interfering with each other. This means I/O is undertaken in parallel, but using non-

collective MPI I/O functionality.

Furthermore, the existing parallel I/O is structured to replicate serial I/O, enabling

files written by the parallel code to be read by the serial version of the code, or the

parallel code to read restart files generated by the serial version of the code. The

Fortran I/O functionality used in the serial code exploited unformatted Fortran file

format. This is a binary file format where each line of data is preceded and finished

by a record of the number of bytes stored on the line.

For the large simulation (16384 blocks) we presented benchmark data on in Section 3

the restart file is of the order of 40GB and there are 9 flowtec files each around

6GB in size. The smaller simulation (800 blocks) has a restart file of

approximately 3 GB with nine flowtec files of around ½ GB each.

 11

5.1 I/O Functionality

An example of the structuring of I/O to replicate the Fortran file written by the serial

code is the original code for writing the restart blocks, which loops over each block a

process owns and then does the following:

do n = 0,2*nharms

 write(fid)((((q(i,j,k,ipde,n),i=-1,imax1),j=-

1,jmax1),k=-1,kmax1),ipde=1,npde)

end do

This has been translated into parallel I/O functionality using MPI I/O as follows:

call setupfile(fid,disp,MPI_INTEGER)

call mpi_file_write(fid, linelength, 1,

 & MPI_INTEGER, MPI_STATUS_IGNORE, ierr)

disp = disp + integersize

do ipde=1,npde

 do k=-1,kmax1

 do j=-1,jmax1

 call setupfile(fid,disp,MPI_DOUBLE_PRECISION)

 call mpi_file_write(fid, q(-1,j,k,ipde,n), imax+3,

& MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE, ierr)

 disp = disp + doublesize*(imax+3)

 end do

 end do

end do

call setupfile(fid,disp,MPI_INTEGER)

call mpi_file_write(fid, linelength, 1,

 & MPI_INTEGER, MPI_STATUS_IGNORE, ierr)

disp = disp + integersize

The above code requires npde*(kmax1+2)*(jmax1+2) MPI-I/O operation for

each harmonic in the simulation, plus two extra operations to write the line lengths

before and after the data, with each operation adding an overhead to the I/O.

The routine setupfile simply moves the file pointer for a given process to ensure

they write the data at the correct place in the file (using MPI_FILE_SEEK)

The restart file includes the halo data from the blocks (the extra data in the data arrays

used to store data from adjacent blocks required for the simulations), hence the array

indices spanning from, for instance, -1 to imax1 rather than 1 to imax. For the

restart file (which is used for continuing simulations) this is acceptable as the halo

data is required for continuing simulations. However, for the output data files (the

flowtec files) this halo data is not required, so flowtec files are written without the

halo data.

 12

The original flowtec file functionality is of the following form (note, each

harmonic is written to a separate flowtec file):

write(line1,'(''ZONE T="arturo",I='',i4,'', J='',i4,'',

K='',i4,'',F=POINT, DT=(SINGLE SINGLE SINGLE DOUBLE

DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE)'')')

imax1,jmax1,kmax1

write(fid(n),'(a)') line1

do k=0,kmax

 do j=0,jmax

 do i=0,imax

 write (fid(n),10)

(var1(i,j,k,ipde,n),ipde=1,npde),(var2(i,j,k,ipde,n),ipde

=1,npde)

 end do

 end do

 end do

10 format(3e16.8,7e22.14)

Which was translated into MPI I/O as follows:

write(line1,'(''ZONE T="arturo HB, mode

'',i2,''",I='',i4,''

&,J='',i4,'',F=POINT, DT=(SINGLE SINGLE DOUBLE DOUBLE

DOUBLE DOUBLE

& DOUBLE DOUBLE)'')') n,imax1,jmax1

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),integersize,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),typechar,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),integersize,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),integersize,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),111,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),integersize,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),111*charactersize,1,

 13

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_CHARACTER)

call mpi_file_write(fid(n),line1,111,

& MPI_CHARACTER,MPI_STATUS_IGNORE,ierr)

disp = disp + charactersize*111

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),111*charactersize,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

 disp = disp + integersize

do k=0,kmax

 do j=0,jmax

 do i=0,imax

 do ipde=1,npde

 tempdata(tempindex) = var1(i,j,k,ipde,n)

 tempindex = tempindex + 1

 end do

 do ipde=1,npde

 tempdata(tempindex) = var2(i,j,k,ipde,n)

 tempindex = tempindex + 1

 end do

 end do

 end do

end do

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),tempdata(1),datasize,

& MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE,ierr)

disp = disp + datasize*doublesize

Note, the large number of mpi_file_write and setupfile operations prior to

tempdata being written are simply to write the block header including the size of

the block into the file.

It is evident for both the restart and flowtec files far more MPI I/O operations

are happening than is efficient, maintaining compatibility with the serial file format

used by COSA is impacting I/O performance.

It is also noted that non-collective MPI I/O functionality is being used. MPI I/O has

the potential to provide more efficient I/O if collective I/O functionality are used

(where all processes are writing the same amount of data to the file at the same time).

Ideally, we would implement this in COSA to improve I/O performance. However,

as each block owned by a process may be different in size, and each process may have

a different number of blocks, it is not possible to write collective I/O operations to do

this.

It could be possible to define MPI datatypes for each block, and then write each block

in a single operation using collective MPI I/O routines, but some global book keeping

would be required to ensure each process has the same number of blocks and to revert

to non-collective routines for none matching numbers of blocks, which would add

 14

communication overheads to the I/O operations. Therefore, we decided in this project

to continue using non-collective I/O functionality but to optimise the way I/O is

performed to improve performance.

5.2 I/O Optimisation

The first I/O optimisation we implemented was to move from writing each row of the

restart file data in a single I/O operation to writing each harmonic for a whole block in

a single I/O operations. i.e. from this:

do n = 0,2*nharms

 call setupfile(fid,disp,MPI_INTEGER)

 call mpi_file_write(fid, linelength, 1,

 & MPI_INTEGER, MPI_STATUS_IGNORE, ierr)

 disp = disp + integersize

 do ipde=1,npde

 do k=-1,kmax1

 do j=-1,jmax1

 call setupfile(fid,disp,MPI_DOUBLE_PRECISION)

 call mpi_file_write(fid, q(-1,j,k,ipde,n), imax+3,

& MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE, ierr)

 disp = disp + doublesize*(imax+3)

 end do

 end do

 end do

 call setupfile(fid,disp,MPI_INTEGER)

 call mpi_file_write(fid, linelength, 1,

& MPI_INTEGER, MPI_STATUS_IGNORE, ierr)

 disp = disp + integersize

end do

to this:

do n = 0,2*nharms

 call setupfile(fid,disp)

 call mpi_file_write(fid, linelength, 1,

& MPI_INTEGER, MPI_STATUS_IGNORE, ierr)

 disp = disp + integersize

 call setupfile(fid,disp)

 call mpi_file_write(fid, q(-1,-1,-1,1,n),

& linelength/doublesize,

& MPI_DOUBLE_PRECISION, MPI_STATUS_IGNORE, ierr)

 disp = disp + linelength

 call setupfile(fid,disp)

 call mpi_file_write(fid, linelength, 1,

& MPI_INTEGER, MPI_STATUS_IGNORE, ierr)

 disp = disp + integersize

end do

 15

We also removed some of the data written out in the flowtec headers for each

block, retaining only what is required to re-construct the data file afterwards in a post-

processing step, and reducing the flowtec file writing to this functionality:

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),n,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),imax1,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),jmax1,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),kmax1,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

do k=0,kmax

 do j=0,jmax

 do i=0,imax

 do ipde=1,npde

 tempdata(tempindex) = var1(i,j,k,ipde,n)

 tempindex = tempindex + 1

 end do

 do ipde=1,npde

 tempdata(tempindex) = var2(i,j,k,ipde,n)

 tempindex = tempindex + 1

 end do

 end do

 end do

end do

call setupfile(fid(n),disp,MPI_DOUBLE_PRECISION)

call mpi_file_write(fid(n),tempdata(1),datasize,

& MPI_DOUBLE_PRECISION,MPI_STATUS_IGNORE,ierr)

disp = disp + datasize*doublesize

Whilst the flowtec files still require almost the same amount of data to be written

(the tempdata is not reduced in size) we have halved the number of MPI I/O

operations required to output this data. Likewise, the same size of restart data is still

be written, but we have dramatically reduce the number of operations required to

perform this I/O.

 16

Figure 5: Performance of 16384 block simulation with optimised I/O (100 iterations)

The performance of the optimised I/O is show in Figure 5 for the large simulation.

We can see that the impact of this optimisation at lower core counts is not significant,

but when we get to large core counts the optimised I/O is having a significant impact.

The code is around 70% faster at 8192 cores and around 50% faster at 16,384 cores.

We benchmarked the optimised I/O functionality with the smaller test case as well, as

shown in Figure 6. Note for this benchmark we reduce the number of iterations of the

simulation from 100 to 20 to highlight the I/O costs in the simulation.

Figure 6: Performance of 800 block simulation with optimised I/O (20 iterations)

As with the larger test case we can see the optimised I/O is clearly faster, around 50%

when using 400 MPI processes (400 cores). However, it’s clear that the I/O is still

expensive, with the code performance when not producing output data still much

faster than the optimised test cases.

10

100

1000

1000 10000

R
u

n
ti

m
e
 (

se
co

n
d

s)

Number of cores

Original code

Original code (no I/O)

Optimised I/O

10

100

1000

0 50 100 150 200 250 300 350 400 450

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of cores

No I/O

Original I/O

Updated I/O

 17

5.3 Restructured I/O

To further optimise the I/O performance of COSA we looked at restructuring the way

the flowtec files were written. Firstly we remove the per block header data

completely, replacing it with a per file header, written by one process, that includes all

the block sizes at the start of the file. This removed the need for this code within each

flowtec block write:

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),n,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),imax1,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),jmax1,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

call setupfile(fid(n),disp,MPI_INTEGER)

call mpi_file_write(fid(n),kmax1,1,

& MPI_INTEGER,MPI_STATUS_IGNORE,ierr)

disp = disp + integersize

Reducing the number of write operations per harmonic per block to a single write for

the data. Furthermore, we also recognised that the code was structured in such a way

that the data to be written to the flowtec files was first collected together into a

large temporary array, requiring all blocks owned by a process to be iterated through,

data collated into this temporary array, then passed to the I/O routines for output.

However, this means that all block data is iterated over once (to construct the

temporary array), then the I/O routines iterate over that temporary array one block at a

time, copy that data into another temporary array and then write that out for each

block.

We constructed a new output routine that does not do the initial collection of data to

be written into a large temporary array, instead it takes in all the source data for the

flowtec files, and collects it into a temporary array one block at a time, which is

then immediately written out to the flowtec file.

This has two benefits, one no longer need a temporary array large enough to store all

the data for all the blocks a process owns, we simply need a temporary array that can

hold the data for a single block. Secondly, we can enable re-use of data that has been

collected into the temporary array, optimising cache usage and therefore reducing

computational costs.

Finally, we also recognised that whilst the majority of I/O time is attributable to

outputting data, when scaling to large numbers of MPI processes the reading of the

mesh required for the simulation can be an overhead. This is done using serial

 18

Fortran I/O, although each process only reads the sections of the file they require for

the blocks they have been assigned.

The serial reading of the input mesh is limited in performance by file locking that is

undertaken when a given process is reading the file. Whilst this locking (ensuring

exclusive access to the file for a single MPI process) is not a large issue with small

process counts, when 16 thousand MPI processes are trying to read the same file it

can slow down this initial I/O.

Therefore, we parallelised the reading of the mesh file using MPI I/O, removing this

file locking and the associated process synchronisation.

Figure 7: Performance of 16384 block simulation with restructured I/O (100 iterations)

Figure 7 and Figure 8 show the performance of the restructured and optimised I/O

functionality. We can see that it has further improved performance for COSA, with

the code now around 100% faster on 8192 cores and 70% faster on 16384 cores for

the large test cases, and 70% faster on 400 cores for the small test case.

Figure 8: Performance of 800 block simulation with restructured I/O (20 iterations)

10

100

1000

1000 10000

R
u

n
ti

m
e
 (

se
co

n
d

s)

Number of cores

Original code

Original code (no I/O)

Optimised I/O

Restructured I/O

10

100

1000

0 50 100 150 200 250 300 350 400 450

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of cores

No I/O

Original I/O

Updated I/O

Restructured I/O

 19

5.4 I/O Standardisation

There are a number of standard I/O formats commonly used in CFD applications,

with CGNS1 and TecPlot2 being two of the most common. Both have parallel I/O

functionality, and are widely used by visualisation, grid generation, and meshing

packages for file creation and reading.

As such, it would be useful for COSA to be able to produce and consume data in

these formats, as it would allow direct visualisation of simulation data without

conversion from the COSA I/O format to TecPlot or CGNS, and it would also using

meshes produced from generators without having to convert them into the COSA

binary mesh format first.

However, for this functionality to be usable in COSA the performance needs to be

close to that of MPI I/O, so we investigated both CGNS and Tecplot parallel I/O

functionality to see what kind of performance could be achieved.

5.4.1 CGNS

CGNS builds on HDF5 to provide I/O functionality. It stores data in trees, with

different types of data about the simulation stored in different branches and leaves of

the tree, along with associated metadata.

CGNS allows both serial and parallel I/O functionality, with metadata and data treated

separately (both can be written in serial and in parallel). Not all the CGNS

functionality has associated parallel versions, but the functionality COSA requires has

been parallelised.

We created a CGNS version of the parallel restart file functionality, with the metadata

about the restart file written in serial by a single process, and the data written in

parallel by all processes.

The metadata I/O was implemented using the following code, which creates a block

in the file for each block in the simulation:

if(amcontroller) then

 call cg_open_f('rest.cgns',CG_MODE_WRITE,fid,ierr)

 if(ierr .ne. CG_OK) then

 write(*,*) 'cg_open_f restart error'

 call cg_error_print_f()

 end if

 call cg_base_write_f(fid,'gridbase',3,3,basenum,ierr)

 if(ierr .ne. CG_OK) then

 write(*,*) 'cg_base_write_f error'

 call cg_error_print_f()

 end if

1CFD General Notation System https://cgns.github.io/
2 http://www.tecplot.com/products/tecplot-360/

 20

 do i = 1,blocksize

 blocknum = i

 write(zonename, "(A5,I6)") "block",blocknum

 call cg_zone_write_f(fid,basenum,zonename,sizes,

 & Structured,zonenum,ierr)

 if(ierr .ne. CG_OK) then

 write(*,*) 'cg_zone_write_f error'

 call cg_error_print_f()

 end if

 call

cg_goto_f(fid,basenum,ierr,'Zone_t',zonenum,'end')

 if(ierr .ne. CG_OK) then

 write(*,*) 'cg_goto_f error'

 call cg_error_print_f()

 end if

 write(linkpath,'(a,i6,a)') 'gridbase/block',zonenum,

 & '/GridCoordinates'

 call cg_link_write_f('GridCoordinates','mesh.cgns',

 & linkpath,ierr)

 if(ierr .ne. CG_OK) then

 write(*,*) 'cg_link_write_f error'

 call cg_error_print_f()

 end if

 call cg_user_data_write_f('User Data',ierr)

 end do

 call cg_close_f(fid,ierr)

 if(ierr .ne. CG_OK) then

 write(*,*) 'cg_close_f error'

 call cg_error_print_f()

 end if

end if

Then the following code was used to write the data into the restart file, where a block

is written in a single call (as in the MPI I/O functionality):

basenum = 1

call cgp_open_f('rest.cgns',CG_MODE_MODIFY,fid,ierr)

solnum = 1

do i = 1,blocksize

 zonenum = i

 write(zonename, "(A5,I6)") "block",zonenum

 call cg_zone_read_f(fid,basenum,zonenum,

& tempzonename,tempsizes,ierr)

 if(trim(tempzonename) .ne. zonename) then

 write(*,*) 'error block name:

',zonename,tempzonename

 end if

 call cg_goto_f(fid,basenum,ierr,'Zone_t',zonenum,

& 'UserDefinedData_t',solnum,'end')

 call cgp_array_write_f(fieldname,RealDouble,5,qsizes,

 21

& arraynum,ierr)

 if(ierr .ne. CG_OK) then

 write(*,*) 'cg_array_write_f error'

 call cg_error_print_f()

 end if

end do

Whilst CGNS is relatively easy to implement, the performance is not comparable to

MPI I/O. A test on 512 MPI processes with a 40GB restart file showed the following

performance:

MPI I/O File Read 3 seconds

CGNS File Read 233 seconds

CGNS File Write 533 seconds

Therefore, it was decided not to implement I/O directly in COSA for reading and

writing CGNS data. Instead, we created some serial applications that could covert

CGNS files in COSA format, and vice versa, for pre/post processing of files outside

the parallel simulation.

We investigate why the CGNS performance is so much slower than MPI-I/O. It is

apparent that CGNS is design for simulations where there are a single, or small

number of, block(s) in the simulation, with each MPI process responsible for part of a

block. This is different to COSA, where there are lots of blocks in a simulation, with

each process responsible for one or more blocks.

The metadata and operational costs of handling blocks in CGNS format seem to

account for the slow functionality, and as they are not generally encountered in

applications using CGNS (because they will only have a single block) the way the I/O

is structured does not lend itself for efficient multi-block I/O.

5.4.2 Tecplot

Tecplot provide a number of commercial tools for visualising, analysing, and

generating CFD data. To support this they have an I/O format, TecplotIO, that

includes a library for I/O operations.

TecplotIO supports three different file formats; a legacy ASCII format they their tools

can read but requires conversion by the tools to process, a binary format known as

plt, and a partitioned binary format szplt designed for large scale parallel I/O.

We implemented the same restart file functionality we implement for CGNS,

targeting szplt files as these enable parallelisation of I/O:

if(tecini142(trim(titlename),trim(varlist),

& filename,

& trim(pwd)//char(0),

& fileformat,filetype,debug,isdouble) .ne. 0) then

 write(*,*) 'error initialising tecini'

end if

do j=1,nblocks

 22

 imax1 = blockindexes(1,j)

 jmax1 = blockindexes(2,j)

 kmax1 = blockindexes(3,j)

 datasize = imax1*jmax1*kmax1

 write (blocknumname, "(I5)") j

 if(teczne142('block'//trim(blocknumname)//char(0),

& zonetype, imax1, jmax1, kmax1, imaxmax,

& jmaxmax, kmaxmax, simtime, strandid, parentzone,

& isblock, nfconns, fnmode,

& tnfnodes,ncbfaces,tnbconns,Null, Null, Null,

& shrconn) .ne. 0) then

 write(*,*) 'error setting up zone'

 end if

 if(tecdat142(datasize*10,tempdata,isdouble) .ne. 0)

then

 write(*,*) 'error writing block data'

 end if

end do

if(tecend142() .ne. 0) then

 write(*,*) 'error calling tecend'

end if

Unfortunately, whilst the above functionality does write a Tecplot file, writing the

szplt file takes around 7 times as long as it did to write the CGNS file. The plt

performance is not as bad, indeed it is around 4x quicker than the CGNS functionality

in serial, but does not have parallel functionality so is not suitable for inclusion in the

simulation code.

We have, as with CGNS, created pre-/post-processing utilities to convert the data to

and from Tecplot format. The issue with szplt I/O performance has been reported

to Tecplot and they are working on a fix for this, so it is possible that future versions

of Tecplot may be suitable for integrating into COSA.

6 WP3 Improvement of MPI communications
Milestone: Improved parallel communication performance on COSA, ideally removing the

MPI communication costs altogether (10-20% of the runtime of the code). This will be

evaluated using profiling and benchmarking as with the other work-packages.

COSA uses nonblocking MPI communications (i.e. MPI_ISend and MPI_IRecv)

to send and receive halo data between processes. The nonblocking communications

are structured in such a way as to enable all communications for a given iteration to

be started, the MPI library to progress them, and then the code waits until they have

finished.

 23

This was implemented to ensure the ordering of the boundary communication for

blocks a process owns is not inhibiting parallel performance (i.e. so that we do not

enforce a particular order of halo communications between blocks and processes).

However, the same functionality can also be used to overlap communication and

computation for COSA.

Currently the initiation of communications (the nonblocking subroutine calls) and the

checking the communications have finished (the wait subroutine calls) are

implemented within the same routines in COSA, the cut routines that handle halo

exchanges.

In this work we separated out the initiation of communications, and the checking the

communications have finished (with associated data handling) into two separate

routines; communication and waiting.

The communication routines collate data to be sent and start the send and receive

nonblocking function calls. The waiting routines check that communications have

finished and then unpack received data into the appropriate data array. All that needs

to be passed between these two routines are the nonblocking handles generated by the

nonblocking send and receive calls that need to be checked by the wait routines.

We tested this new functionality to ensure correctness and investigated performance

of this overlapping. We tried with and without Cray’s nemesis helper threads,

designed to asynchronously progress MPI messages for applications, and enabled

using these environment variables when running the application:

export MPICH_NEMESIS_ASYNC_PROGRESS=1

export MPICH_MAX_THREAD_SAFETY=multiple

export MPICH_GNI_USE_UNASSIGNED_CPUS=enabled

Unfortunately, there were no significant performance improvements from splitting the

MPI communications. Whilst the new functionality allows for potential overlapping

of communication and compute, the way COSA is structured means there is very little

work that can be overlapped with the communication. Values to be communicated

are calculated, sent, and then used immediately in the simulation, there is no real

scope for doing other calculations whilst that data is being sent.

To properly exploit this functionality, significant restructuring of the computational

kernels in COSA would be required to intermingle different types of calculation, and

thus give potential for undertaking calculations of one type whilst data for a different

type of calculation is communicated.

6.1 Dynamic allocation

We also re-organised the memory used in MPI communications. The existing code

uses static arrays with compile time defined limits to store data being communicated

between processes (the temporary storage required to enable nonblocking MPI

communications).

 24

As these limits can only be changed by re-compiling the code, and the code will crash

if the arrays are too small, these arrays are generally larger than required which is

wasteful of memory, but also risks failed jobs when the limits aren’t sufficient.

We have re-organised the code and calculated the exact amount of memory required

for the MPI communications. Now we dynamically allocate it for the communication

routines, ensuring exactly the right amount of memory is being used.

7 WP4 Dynamic load balancing
Milestone: the new DLB capability will yield runtime reductions of about one order of

magnitude for simulations using production multi-block grids generated with state-of-the-art

grid generators.

As COSA is a multi-block code, simulation blocks are the standard unit for data

decomposition across processes. We do not split blocks within COSA as this would

require significant functionality to ensure that geometry and boundary conditions are

correctly handled, we simply distribute existing blocks to processes in as even a way

as possible, trying to ensure each process has the same number of blocks.

However, this places significant burdens on the process of creating simulation

datasets. A given simulation grid must be manually split into blocks prior to running,

and this splitting must ensure that blocks have equal, or close to equal, amounts of

work to ensure the parallel simulation is load balanced.

7.1 Load Balancing Optimisation

By default, COSA distributes the grid across processes as evenly as possible. The grid

is divided into blocks, specified in the input file. For �� blocks and � processes, all

processes will have at least ���
� � number of blocks. If � does not exactly divide �� ,

the first � processes (going by rank ascending order) gain one additional block, where

� is the remainder of ��modulo �.

To account for variable block sizes, we define the total work, �, of a given process to

be the sum of the sizes of the blocks it owns (ignoring other factors such as

communication). Load balance can now be achieved by distributing blocks across

processes so that each process has roughly the same work, �, as opposed to a similar

number of blocks.

To determine which blocks should go to each process, we use the serial graph

partitioning library METIS3. Whilst we could have implemented our own partitioning

algorithm, there is nothing within the functionality we required that necessitated

developing this functionality given packages such as METIS are already well

established and tested. METIS can quickly and efficiently find the optimal partition of

a graph, using constraints specified by the user.

3 http://glaros.dtc.umn.edu/gkhome/metis/ Karypsis Lab, University of Minnesota

 25

We construct a weighted graph from the COSA input block data, where each block is

a graph node with "weight" equal to its size (number of grid cells within the block),

and vertices exist between neighbouring blocks.

The graph data is then passed to METIS through a subroutine call, and METIS returns

a partitioned block graph so that each partition has approximately the same weight i.e.

the same �. Specifically, approach taken to get a load balanced distribution is:

1. An initial block distribution is done (using the original decomposition

algorithm in COSA).

2. Each process then constructs three arrays: an array with the number of

neighbours for each block it owns, an array with the process ranks/ID of these

neighbours, and an array with the size, i.e. "weight", of each of these

neighbours

3. Each process runs METIS with these input arrays (and other parameters).

METIS produces a partition vector specifying the process rank/ID that has

been assigned each block

4. Processes now know which blocks they own and can read them from the input

mesh file using existing COSA I/O functionality

It is worth noting, that, this does not involve communication between processes since

each process has all block information for the entire mesh. This does not mean that

each process needs to read in all the input data, simply all processes need to read the

input file that specifies the size and number of blocks within the grid.

Using a serial graph partitioner does necessitate all processes replicating this load

balancing work, but the trade-off is that it allows us to implement this functionality

without communication, meaning it should not impact scaling of COSA to large

process counts. Indeed, we measured the time to run this functionality on our large

test case (16,384 blocks) and METIS completed in under 3 seconds.

Another issue that should be highlighted is that load balancing such as that we are

implementing here relies on there being more units of work to distribute to processes

that there are processes. If we have 16 simulation blocks and 16 MPI processes then

we have no scope for distributing blocks in a load balanced way (if they different in

the amount of work within them) as we need at least 2 blocks per process to be able to

distribute them (some may still have a single block, with others having multiple).

We implement the load balancing using the METIS routine

METIS_PartGraphKway. This routine takes the following data as input:

• nvtxs: The number of vertices in the graph. For COSA this is the number of

blocks in the simulation

• ncon: The number of balancing constraints (weights on each vertex to

consider when partition), which we set to 1

• xadj, adjncy: The adjacency structure of the graph, specifying which

blocks a block is connected to. We use the block and cut (boundary) data in

the COSA input file to construct these

• vwgt: The weights of the graph vertices. This is the number of grid points

per block (the size of each block).

 26

• vsize: The size of vertices used for communication volume calculations.

This is null for COSA.

• adjwgt: The weights of the edges between vertices (rather than the vertices

themselves). For standard load balancing this is set to 1 for every edge. For

load balancing that take communications into account this is set to the size of

messages required between the two connected vertices.

• nparts: The number of partitions to split the graph into. For COSA this is

the number of MPI processes being used for the simulation.

• tpwgts: Target weight partition. We set this to be 1.0/nparts

• ubvec: Load balance tolerance for the partitioning. We set this to be 10%

(1.01)

It return a partition array which has an entry for every block in the simulation with the

number of the partition that has been assign to. These partitions are mapped to MPI

processes (the partition number is equivalent to the MPI process rank + 1 of the

process that will own that block).

This partition array is then used by the standard COSA data decomposition code to

assign blocks to processes. The only modification that we need to make was to

enable assigning none contiguous block numbers to processes. The original

decomposition code assigns blocks to processes in contiguous chunks, but the same is

not guaranteed with the METIS functionality. All that is required to enable this is to

keep an array for blocks assigned to this process with the block number of each block

we own.

Finally, we also implemented functionality to read a pre-defined block decomposition

from file, to enable the load balancing to be done outside the simulation and simply

provided as input.

7.1.1 Communication costs

The functionality discussed previously will attempt to distribute grid cells evenly

across processes, i.e. assign blocks to processes so they have roughly equal numbers

of grid cells to compute. This will balance computational work across MPI processes,

however it does not take into account the communication cost associated with blocks

and their halo exchanges. As a consequence, it could generate domain

decompositions that balance the amount of work between MPI processes but

significantly increases the amount of communication required for the simulation.

This is because if neighbour blocks are owned by the same MPI process then

associated communications can be undertaken through simple memory copies.

However, if they are owned by different MPI processes then communications through

the MPI library will be required. Even if these are undertaken through memory

copies inside the MPI libraries (i.e. the MPI processes are on the same node) this will

still involve copying the data to the temporary array for sending via MPI and then

unpacking it after the receive has happened.

 27

We can extend our domain decomposition functionality to take communications into

account. Using the same METIS functionality as before, we can adjust the adjacency

weights of each edge to take into account the communications required between

blocks. This type of load balancing can be enabled at run time by specifying a flag in

the input file.

7.1.2 Load balancing performance

We benchmarked the new functionality and compare the performance to the original

code using the unbalanced grid we used in the initial benchmarks. Because the load

balancing decomposition requires there to be more blocks than processes (so varying

numbers of processes can be assigned to each MPI process) we cannot benefit from

load balancing using 256 MPI processes (the same number as the total number of

blocks in the simulation). Performance results are shown in Figure 9.

Figure 9: Comparison of the unbalanced simulation runtime vs the same simulation run with the

load balanced decomposition

It is evident from the above graph that the load balanced code is significantly faster

than the original decomposition. Indeed, using 64 cores we can complete the

simulation in the same time as the original code using 256 cores and at 128 cores we

are 50% fast with the load balanced code that 256 cores using the original code. At

128 cores the load balanced code is ~3x faster than the original code.

7.1.3 Compute node usage

Furthermore, the load balancing decomposition also enables us to use numbers of

MPI processes that do not evenly divide the number of blocks in the simulation

without suffering significant performance impacts.

Whilst this may not seem useful functionality, and is likely to be irrelevant for very

large simulations, because there are a none power of two number of cores in the

ARCHER compute nodes (24 cores per node) we often have the scenario that cores

are left empty when running simulations.

For instance, if I am running a simulation with 256 blocks, with the original

decomposition functionality I would want to run 16, 32, 64, 128, 256 MPI processes,

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300

R
u

n
ti

m
e

 (
se

co
n

d
s)

Process Count

Simple Decomposition

Simple Ideal

Load Balanced

Load Balanced Ideal

 28

because this would give me an even number of blocks per MPI process. However, as

ARCHER has 24 cores per node, running 16 MPI processes leaves 8 cores spare.

Likewise, 32 MPI processes leaves 16 cores spare on one of the two nodes being

used. 64 MPI processes leaves 8 cores spare on one node, and 128 MPI processes

leaves 16 spare.

The load balancing functionality lets us fill such spare cores without having to impact

runtime, as demonstrated in the following table:

ARCHER Nodes

Used

MPI Processes

Used

Original decomposition Load balance

decomposition

2 32 4924 2220

2 48 4081 1544

3 64 3157 1247

3 72 3231 968

4 96 2833 792

5 120 2764 714

6 128 2016 646

We can see from the table above that if we use 6 nodes instead of 5 in the load

balanced case we get around a 10% performance improvement with a 20% increase in

the cost of our simulation. We can drop back to the smaller number of nodes, fill

them up completely, and still get good performance. If we do the same for the

original data decomposition we get a significant performance impact, thus making it

not cost effective.

Therefore, not only has the load balancing functionality enabled simple grid

decompositions to be used directly by COSA without losing performance, it has also

enabled more efficient use of the systems (such as ARCHER) that COSA is run on.

7.1.4 Communication cost decomposition performance

We also benchmarked the functionality that takes into account communication costs

as well as the number of grid cells within a block when the decomposition is

constructed. Using the same benchmark we compared performance to the standard

load balancing functionality, with the results presented in Figure 10.

Figure 10: Comparison of communication load balancing vs workload balancing

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140

R
u

n
ti

m
e

 (
se

co
n

d
s)

Process Count

Load Balanced

Load Communication Balanced

 29

As can be seen in the above graph the communication balancing functionality does

not significantly change the performance of the application for the simulations we

have undertaken. However, for larger simulations it may be more important.

8 WP5 Serial Improvements
Milestone: the core computational kernels will vectorise using the Intel and Cray compilers

on ARCHER, which is expected to greatly reduce runtimes of all COSA simulation types.

We have investigate optimising the top computational kernels in COSA, namely those

listed in the profiling data we presented in Section 3.3.1:

• vflux

• rhoflux

• muscl

• q_face

• tridi

• bresid

• muscl_bi

• rtst

In these routines we looked to improve vectorisation and reduce computational costs.

This work involved restructuring some loop calculations to reduce temporary arrays

and boost cache re-use, removing loop invariants, and replacing divisions by

reciprocals such as:
do ipde = 1,4

 fac1 = fact * vol(i,j)/dt

end do

becomes:

recip = 1.0d / dt

do ipde = 1,4

 fact1 = fact * vol(i,j) * recip

end do

Whilst the above restructuring does have an impact on the calculated results, we

validated that simulation results with the new functionality were close enough to the

original code to be acceptable.

After implementing the optimisations we re-ran out benchmark cases and observed

between a 3-5% performance improvement for this work.

9 Summary
We have made a number of improvements to COSA to improve the performance and

usability of the code. The new boundary conditions (MFPBC) enable harmonic

balance simulations to fully realise the performance savings this frequency domain

approach allows for turbo machinery applications.

 30

Our I/O work has reduced the cost of I/O at large core counts by as much as 70%,

significantly reducing parallel overheads and saving simulation time.

We have provided tools to convert COSA data to and from standard CFD data

formats (CGNS and Tecplot) enabling data generated from other packages to be read

by COSA and data produced by COSA to be read by other packages.

We have implemented load balancing functionality that has demonstrated up to 3x

performance improvements and up to a 4x reduction in resource utilisation when

compared to the existing code using an unbalanced simulation. It also enables the

efficient use of full compute nodes, rather than relying on using a number of MPI

processes that evenly divides the number of blocks in the simulations.

Crucially, though, it also greatly reduces the time and effort required to generate input

grids or meshes for COSA, enabling the output of standard grid/mesh generation tools

to be used directly in COSA.

Finally, we have made the code easier to use through dynamic memory allocation,

and enabled future communication optimisation by splitting sending/receiving and

waiting for message completion. Altogether these performance improvements and

functionality upgrades significant increase the potential for COSA to be a highly

useful, usable, and scalable simulation package.

10 Future Work
There are a number of areas where further optimisation or functionality is could be

added to COSA. If the szplt I/O format performance issues are fixed by Tecplot

then this I/O format could be evaluated for performance and added to COSA if it

performs sufficiently well.

A more extensive refactoring of the code would enable exploiting the splitting of

communication we have implemented in this project.

There is also potential to do some hardware specific optimisation in COSA, porting to

KNL and optimising where the memory is allocated on the hardware would potential

bring benefits, as would porting to GPUs.

11 Appendix A
COSA input files used for this project

11.1 16384 block input file header:

Input file for 3D Euler/NS code

debug model flow-type id

n sst external aircraft

gamma reyno pranl machfs alpha beta

1.4d0 1.0d+7 0.71d0 0.1 5.00 0.d0

 31

prant tkefar mutfar wall roughk

0.9d0 1.d-6 0.1 wilcox 0.d0

posprd lim_ptke prdlim lim_pome

n n 100 n minimum

second

flow-mode solver rk option nharms

unsteady hb rkex 4

move freq. dh0x dh0y

plunge 0.01 1.0 0.d0

irest srest cfl cdff lmax

iupdt toler

 0 10000 1.5 4 100 1

1.d-14

rkap irs-typ cfli psi

-1. cirs_v1 3.0d0 0.25

cflt cflit ramp-opt n(3) n(2)

n(1)

2.00 4.00 ramping1 1000 500 250

cfli(2) cflit(2) cfli(1) cflit(1) stop

1.5 2.0 0.5 0.5 50000

lim epslim cntrpy etpfxtyp entfxctf

4 1.d-6 0.d0 0 0.95d0

nlevel nl_crs nl_fmg nstart npre

npost ncrs

3 4 1 3 3 3

6

prol.type restr.type lim.type

bilinear ho_rest lim_corr3

flow-speed

nolomach

tref

288.2

functional

default 0.25 0.0 0.5

lref1 lref2 lref3

1.0 1.0 1.0

1

224 4609 4610 4611 4612 4613 4614 4615 4616 4865 4866

4867 4868 4869 4870 4871 4872 5121 5122 5123 5124 5125

5126 5127 5128 5377 5378 5379 5380 5381 5382 5383 5384

5633 5634 5635 5636 5637 5638 5639 5640 5889 5890 5891

5892

 5893 5894 5895 5896 6145 6146 6147 6148 6149 6150 6151

6152 6401 6402 6403 6404 6405 6406 6407 6408 6657 6658

6659 6660 6661 6662 6663 6664 6913 6914 6915 6916 6917

6918 6919 6920 7169 7170 7171 7172 7173 7174 7175 7176

742

5 7426 7427 7428 7429 7430 7431 7432 7681 7682 7683 7684

7685 7686 7687 7688 7937 7938 7939 7940 7941 7942 7943

7944 8193 8194 8195 8196 8197 8198 8199 8200 8449 8450

8451 8452 8453 8454 8455 8456 8705 8706 8707 8708 8709 87

 32

10 8711 8712 8961 8962 8963 8964 8965 8966 8967 8968 9217

9218 9219 9220 9221 9222 9223 9224 9473 9474 9475 9476

9477 9478 9479 9480 9729 9730 9731 9732 9733 9734 9735

9736 9985 9986 9987 9988 9989 9990 9991 9992 10241 10242

 10243 10244 10245 10246 10247 10248 10497 10498 10499

10500 10501 10502 10503 10504 10753 10754 10755 10756

10757 10758 10759 10760 11009 11010 11011 11012 11013

11014 11015 11016 11265 11266 11267 11268 11269 11270

11271 1

1272 11521 11522 11523 11524 11525 11526 11527 11528

16384

11.2 800 block input file header
Input file for 3D Euler/NS code

debug model flow-type id nblade

n sst external shawt 3

gamma reyno pranl machfs alpha beta

1.4d0 7.7d+5 0.71d0 0.0335 0.00 20.00

prant tkefar mutfar wall roughk

0.9d0 1.d-4 0.1 menter 0.d0

posprd lim_ptke prdlim lim_pome pr.type

turb.ord.

n y 10 y minimum

second

flow-mode solver rk option nharms

unsteady hb rkex 4

move freq. xrotc yrotc frame

rotating -0.000593 0.d0 0.d0 relative

irest srest cfl cdff lmax

iupdt toler

0 5000 1.5 4 20 1

1.d-12

rkap irs-typ cfli cutcirs psi

-1. cirs_v1 3.0 0 0.0625

cflt cflit ramp-opt n(3) n(2)

n(1)

2.0 4.0 ramping1 2000 1000 500

cfli(2) cflit(2) cfli(1) cflit(1)

1.5 2.0 0.1 0.1

lim epslim cntrpy etpfxtyp entfxctf

4 1.d-6 1.d0 0 0.3d0

nlevel nl_crs nl_fmg nstart npre

npost ncrs

1 4 1 2 3 2

2

flow-speed

nolomach

tref

288.2

functional

 33

default 0.0 0.0 0.0

lref1 lref2 lref3

1.0 1.0 1.0

1

76 33 37 41 42 49 50 57 58 125 126 161 165 169 170 197

198 233 234 241 242 341 342 351 356 357 362 371 372 385

390 395 396 405 406 413 418 455 460 465 470 475 480 481

486 499 504 505 510 519 524 529 534 596 601 606 611 616

621 626 631 636 640 645 650 662 667 672 676 681 686 700

705 710 715 720 725

800

11.3 256 block unbalanced decomposition input file header
*** input file for 3D Euler/NS COSA solver ***

debug model flow-type id

n sst external aircraft

gamma reyno pranl machfs alpha beta

1.4d0 1.0d+7 0.71d0 0.1 5.00 0.d0

prant tkefar mutfar wall roughk

0.9d0 1.d-6 0.1 wilcox 0.d0

posprd lim_ptke prdlim lim_pome

n n 100 n minimum

second

flow-mode solver rk option nharms

unsteady hb rkex 4

move freq. dh0x dh0y

plunge 0.01 1.0 0.d0

irest srest cfl cdff lmax

iupdt toler

 0 10000 1.5 4 200 1

1.d-14

rkap irs-typ cfli cutcirs psi

-1. cirs_v1 3.0d0 0 0.25

cflt cflit ramp-opt n(3) n(2)

n(1)

2.00 4.00 ramping1 1000 500 250

cfli(2) cflit(2) cfli(1) cflit(1) stop

1.5 2.0 0.5 0.5 50000

lim epslim cntrpy etpfxtyp entfxctf

4 1.d-6 0.d0 0 0.95d0

nlevel nl_crs nl_fmg nstart npre

npost ncrs

3 4 1 3 3 3

6

prol.type restr.type lim.type

bilinear ho_rest lim_corr3

flow-speed

nolomach

tref

 34

288.2

functional

default 0.25 0.0 0.5

lref1 lref2 lref3

1.0 1.0 1.0

1

32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32

256

