
4 Technical	Report	(publishable)	
	

ARCHER	eCSE	Technical	Report	

	
Algorithmic	Enhancements		
to	the	Solvaware	Package		

for	the	Analysis	of	Hydration	
	
	
	
Technical	staff:	Arno	Proeme	(EPCC,	University	of	Edinburgh)	
PI:	David	Huggins	(TCM,	Department	of	Physics,	University	of	Cambridge)	
	
	
		

																										 	
	
	

																																															 	
	 	

4.1 Acknowledgement	
	
This	work	was	funded	under	the	embedded	CSE	programme	of	the	ARCHER	UK	
National	Supercomputing	Service	(http://www.archer.ac.uk)	
	

4.2 Abstract	
	
This	report	details	the	work	undertaken	as	part	of	ARCHER	eCSE	project	03-03	
to	port,	optimise,	and	enhance	the	Solvaware	software	package	for	the	analysis	
of	solvation	(hydration)	in	biomolecular	systems.	Each	planned	work	package	is	
reported	against	and	results	as	well	as	a	technical	discussion	are	presented.		
	

4.3 Introduction	
	
Solvaware	consists	of	a	suite	of	tools	in	the	form	of	Perl	scripts	and	C++	code	that	
taken	 together	 largely	 automate	 a	 workflow	 enabling	 users	 to	 generate	
molecular	 dynamics	 (MD)	 trajectories	 and	 analyse	 these	 using	 a	 novel	
implementation	 of	 an	 algorithm	based	 on	 the	 statistical	mechanical	method	 of	
inhomogeneous	fluid	solvation	theory	(IFST).	This	is	a	transformative	technique	
in	structure-based	drug	design,	as	 it	allows	users	 to	model	and	understand	the	
thermodynamics	of	individual	water	molecules	around	biomolecules.		
	
The	first	stage	of	the	workflow	is	to	prepare	the	input	structure	and	generate	MD	
trajectories	using	the	popular	third-party	high-performance	MD	package	NAMD1.	
The	flow	diagram	in	Figure	1	illustrates	the	workflow.	
	
Each	of	the	steps	in	this	stage	is	run	in	sequence	and	controlled	by	a	Perl	script.	
Each	 Perl	 script	 reads	 a	 Solvaware	 configuration	 file,	 which	 contains	
approximately	 50	 options.	 The	 last	 two	 steps	 run	 simulations	 using	 NAMD	
whereas	 the	 first	 two	 steps	 run	 utilities	 written	 in	 C++	 that	 are	 part	 of	
Solvaware,	 as	 well	 as	 one	 external	 dependency,	 namely	 the	 freely	 available	
Solvate	utility2.		
	
	
Steps	1-2	are	very	quick,	taking	on	the	order	of	a	minute	to	complete	in	serial	on	
modern	processor	architectures.	Depending	on	the	system	being	studied	and	the	
computational	resources	allocated,	step	3	(equilibration)	takes	on	the	order	of	3	
hours	to	complete,	and	step	4	(production	dynamics	run)	takes	on	the	order	of	
24	hours.	In	terms	of	storage,	step	4	produces	a	NAMD	output	trajectory	in	the	
DCD	 binary	 file	 format	 that	 is	 3GB-10GB,	 again	 depending	 on	 the	 size	 of	 the	
system.	
	

																																																								
1 http://www.ks.uiuc.edu/Research/namd/
2 http://www.mpibpc.mpg.de/grubmueller/solvate

	
	
	
	
	
	
	
	
	
Figure	1	-	Flow	diagram	illustrating	the	workflow.	

	
The	latter	stages	of	the	Solvaware	workflow	involve	the	IFST	analysis,	which	is	
implemented	 in	 C++.	 This	 amounts	 to	 calculating	 the	 mean	 enthalpy	 and	
performing	a	k-nearest	neighbour	 (KNN)	 search	 in	3	dimensions	on	 snapshots	
from	the	MD	trajectory	to	calculate	the	mean	entropy.	This	allows	the	solvation	
(hydration)	 free	 energy	 for	 the	 solute	 to	 be	 computed,	 which	 can	 give	 novel	
insight	into	intermolecular	interactions.		
	

4.4 Project	Work	Packages	
	

WP1		Develop	a	Solvaware	package	on	ARCHER	
	
An	 improved	 Solvaware	 package	 containing	 the	 enhancements	 implemented	
across	all	work	packages	has	been	made	centrally	available	on	ARCHER.	In	this	
section	we	describe	 the	 enhancements	 that	were	made	 specifically	 to	 facilitate	

Preparation	
	Read	all	input	parameters	from	Solvaware	configuration	file.	Read	protein	

structure/connectivity	from	PDB	and	PSF	file.	Prepare	protein	structure	and	assign	forcefield	
parameters.	

	
	

Setup	
Setup	periodic	boundary	conditions.	Solvate	system.	Set	water	model.	Write	PDB	and	PSF	

system	structure	files	for	NAMD.	
	
	

Equilibration	
Write	NAMD	input	files	for	MD	equilibration	simulations.	Write	job	scripts	for	MD	

equilibration	and	production	simulations.	Run	MD	equilibration	simulation	using	NAMD.	
	
	

Dynamics	
Write	NAMD	input	files	for	MD	production	simulations.	Write	job	scripts	for	MD	production	

simulations.	Run	production	MD	simulation	using	NAMD.	
	

Entropy	Calculations		 	 	 	 Energy	Calculations	
MD	trajectories	analysed	to.	 	 	 	 MD	trajectories	analysed	to	
calculate	per	voxel	entropies	 	 	 	 calculate	per	voxel	energies.	

	
	
	

Results	
Combine	results	from	entropy	and	energy	calculations	to	generate	a	PDB	file	for	visualising	

per	voxel	free-energy	density.	
	
	

the	creation,	adoption,	and	efficient	usage	of	 this	package	by	ARCHER	users	as	
well	as	its	potential	deployment	and	use	on	other,	similar	systems.		
	
As	part	of	the	process	of	porting	Solvaware	to	ARCHER	existing	Perl	scripts	were	
generalised	 away	 from	 close	 integration	 with	 the	 University	 of	 Cambridge’s	
Darwin	 machine	 on	 which	 they	 had	 thus	 far	 been	 used	 by	 removing	 explicit	
executable	paths	and	options	specific	 to	this	machine.	Scripts	were	modified	to	
read	 machine-specific	 options	 specified	 at	 package	 installation	 time	 or	 at	 run	
time,	 as	 appropriate,	 as	 well	 as	 settings	 supplied	 by	 the	 environment	module	
system	that	is	generically	used	to	load	and	modify	user	environments	–	including	
executable	 paths	 –	 on	 high-performance	 computing	 systems.	 Scripts	 were	
modified	 to	 read	 some	 of	 the	 run-time	 options	 from	 a	 configuration	 file	 that	
users	 are	already	expected	 to	modify	 to	 set	up	 their	problem	 for	Solvaware	 to	
solve,	thereby	enhancing	transparency	and	ease	of	use.	Efficient	machine-specific	
installation	and	runtime	defaults	for	ARCHER	and	Darwin	were	included.	
	
Single-node	 and	 multi-node	 NAMD	 benchmarking	 was	 performed	 in	 order	 to	
determine	 optimal	 use	 of	 ARCHER	 for	 typical	 biomolecular	 systems	 simulated	
with	NAMD	in	order	to	be	analysed	by	Solvaware	–	see	figures	2	and	3.	
	

	
Figure	 2	 –	 single-node	 NAMD	 benchmark	 of	 cb7amo	 test	 case	 on	 ARCHER.	 Best	
time	 is	 96	 seconds	 using	 48	 tasks	 (hyperthreading	 enabled).	 Best	 time	 without	
hyperthreading	enabled	is	124	seconds	for	24	tasks.	
	
As	shown	in	figure	2,	benchmarking	revealed	that	for	systems	typically	explored	
using	Solvaware	a	performance	gain	of	20-30%	during	the	time-consuming	MD	
simulation	 stage	 can	 be	 achieved	 by	 enabling	 Intel	 hyperthreads.	 This	 was	
included	 in	 the	 default	 job	 script	 for	 NAMD	 generated	 by	 Solvaware,	 thus	
ensuring	efficient	use	of	ARCHER	by	users	of	Solvaware.	
	

	
Figure	3	–	multi-node	NAMD	benchmark	of	cb7amo	test	case	on	ARCHER.		Parallel	
efficiency	drops	to	~50%	from	6	nodes	onwards.		
	
Also	 included	 in	 the	 package	 repository	 are	 an	 installation	 script,	 and	 an	
environment	 module	 file	 that	 serves	 as	 a	 template	 for	 deployment	 on	 other	
machines.		
	
Some	scripts	and	utilities	were	rewritten	to	make	the	workflow	more	seamless	
especially	 for	non-expert	users,	 requiring	 less	knowledge	and	 intervention	and	
providing	more	informative	feedback	during	each	step.		
	
Identical	code	duplicated	across	Perl	scripts	was	refactored	into	a	shared	library,	
thereby	facilitating	future	development	work.		
	
Finally,	documentation	 in	 the	 form	of	a	user	manual	explaining	how	to	use	 the	
package	 and	 detailing	 the	 meaning	 and	 relevance	 of	 available	 options	 was	
produced	and	made	available	on	the	ARCHER	website.	
	

WP2		Improve	Efficiency	of	k-Nearest	Neighbours	Algorithm	
	
The	molecular	dynamics	simulation	performed	in	the	first	stage	of	the	Solvaware	
workflow	produces	 a	 trajectory	 for	 all	 the	 atoms	 in	 the	 system,	 i.e.	 both	 those	
that	make	up	a	biomolecule	of	interest,	typically	a	protein,	as	well	as	atoms	that	
make	 up	 the	 solvent	 molecules,	 typically	 water,	 surrounding	 the	 biomolecule.	
This	is	stored	in	a	DCD	format	binary	file	as	a	series	of	snapshots,	or	frames,	each	
of	which	contains	the	positions	of	all	atoms	at	one	instant	of	the	simulation.	
	
A	key	part	in	the	second	stage	of	the	Solvaware	workflow	is	the	determination	by	
a	k-nearest	neighbours	(KNN)	algorithm	of	the	k	water	molecules	closest,	under	
an	appropriate	distance	metric	and	across	all	frames,	to	a	given	water	molecule.	
Computing	 this	 for	 all	 water	molecules	 allows	 the	 IFST	 algorithm	 to	 compute	

entropies	 and	 hence,	 in	 combination	 with	 a	 computation	 of	 the	 energies,	 the	
solvation	(hydration)	free	energy.	
	
Grid-based	restructuring	and	nearest-voxels	approximation	
	
Prior	to	this	eCSE	project	the	KNN	algorithm	in	the	existing	serial	C++	code	made	
a	 costly	 all-to-all	 comparison:	 for	 F	 frames	 chosen	 from	 the	 trajectory	 and	W	
water	 molecules	 present	 in	 the	 system,	 and	 defining	 n	 =	 WF,	 the	 algorithm	
performed	 O(n2)	 distance	 metric	 evaluations.	 This	 naïve	 algorithm	 was	
problematic	as	computation	of	hydration	energy	for	 large	systems	or	with	high	
accuracy	(many	frames)	was	too	costly.		
	
To	 improve	 the	 efficiency	 of	 the	 KNN	 algorithm,	 it	 was	 restructured	 by	
introducing	a	three-dimensional	spatial	grid	consisting	of	voxels,	with	one	voxel	
associated	to	each	point	on	the	grid.	This	grid	was	first	implemented	as	a	three-
dimensional	 STL	 vector	 whose	 components	 are	 instances	 of	 a	 newly-defined	
Voxel	class:	
	

vector<vector<vector<Voxel>	>	>		allvoxels	
	
	
Each	Voxel	in	turn	stores	a	vector	of	newly-defined	Water	objects:	
	

vector<Water>	waterposes_	
	
Finally	 each	 Water	 contains	 11	 doubles	 that	 store	 the	 position	 of	 a	 water	
molecule	and	its	orientation	in	a	quaternion	representation,	as	well	as	an	integer	
that	stores	the	frame	in	which	this	water	molecule	was	encountered	in	the	DCD	
file.	Before	the	KNN	algorithm	executes,	the	desired	trajectory	data	is	read	from	
the	DCD	 file	and	all	water	molecules	stored	 in	voxels	according	 to	 their	spatial	
location.	The	size	of	the	grid	is	determined	by	the	size	of	the	cell	used	during	the	
MD	simulations,	which	 is	 identical	 throughout	 the	workflow	and	 specified	 in	 a	
configuration	file.		
	
This	restructuring	allowed	an	extremely	fruitful	approximation	to	be	made	to	the	
KNN	 algorithm,	 namely	 to	 restrict	 the	 KNN	 search	 to	 only	 consider	 water	
molecules	 located	 in	 voxels	 that	 surround	 the	 one	 containing	 a	 given	 water	
molecule	of	interest.	The	current	implementation	allows	for	arbitrarily	far	away	
voxels	 to	 be	 considered,	 down	 to	 just	 immediate	 neighbouring	 voxels.	 For	 the	
approximation	 to	 remain	 accurate	 if	 one	 chooses	 to	 increase	 the	 number	 of	
neighbouring	waters,	k,	 to	be	considered	 it	stands	to	reason	that	one	will	need	
eventually	to	also	extend	the	voxel	search	range	to	include	voxels	in	which	these	
further	away	neighbouring	waters	can	be	found.	
	
The	benefits	of	avoiding	O(n2)	scaling	thanks	to	these	enhancements	to	the	code	
are	already	apparent	at	very	modest	scale.	An	IFST	calculation	over	a	mere	100	
frames	of	a	DCD	file	(which	can	contain	O(106)	frames	in	total)	takes	roughly	900	
seconds	using	the	old	all-to-all	KNN	code	compared	to	less	than	a	second	for	the	
restructured	grid-based	version,	where	both	codes	use	k=1	(considering	nearest	

water	only)	and	with	a	restriction	to	immediate	neighbour	voxels	(±1	in	the	x,	y,	
and	 z	 directions)	 only	 in	 the	 grid-based	 case.	 The	 difference	 in	 the	 resulting	
entropy	is	less	than	4%.	
	
Shared-memory	Parallelisation	
	
This	 restructured	 code	was	 however	 still	 serial,	 and	 could	 therefore	 not	make	
efficient	use	of	ARCHER	compute	nodes.	It	is	in	principle	possible	to	modify	the	
code	to	run	concurrent	but	completely	independent	instances	of	the	executable	
in	 such	 a	 way	 that	 each	 instance	 computes	 entropy	 contributions	 from	 a	
subsection	of	the	grid	following	division	of	labour	through	instructions	given	to	
it	at	run	time,	with	the	results	recomposed	afterwards.	Indeed	this	approach	was	
taken	to	run	the	old	code	on	the	Darwin	cluster.	However	this	is	not	possible	on	
ARCHER	as	 the	Application	Level	Placement	Scheduler’s	aprun command	does	
not	allow	for	the	execution	of	concurrent	serial	instances	of	an	application	on	a	
single	 node.	 There	 was	 therefore	 a	 clear	 need	 to	 consider	 a	 parallel	
programming	model	such	as	OpenMP	or	MPI	in	order	to	enable	the	application	
to	 run	 at	 all	 efficiently	 on	 ARCHER.	 Moreover,	 introducing	 a	 parallel	
programming	model	into	the	code	allows	for	much	more	flexibility	than	a	static	
decomposition,	 with	 potential	 for	 load	 balancing,	 tuning	 of	 parallelism,	 and	
extension	 of	 the	 code	 beyond	 what	 can	 be	 dealt	 with	 through	 a	 simple	 static	
decomposition.	
	
Although	 the	 initial	 project	 proposal	 set	 out	 the	 intention	 to	 introduce	 a	
distributed-memory	parallelisation	using	MPI,	it	was	decided	to	proceed	instead	
with	a	shared-memory	parallelisation	of	the	grid-structured	code	using	OpenMP,	
for	a	number	of	reasons:	
	
(a)	OpenMP	was	 considered	easier	 and	quicker	 to	 implement	 incrementally	 as	
fewer	modifications	 need	 to	 be	made	 to	 the	 code	 and	 no	 thought	 needs	 to	 be	
given	 about	 how	 to	 decompose	 the	 problem	 and	 distribute	 the	 DCD	 data	 as	
would	be	needed	in	a	distributed-memory	approach.	It	is	arguably	also	easier	to	
debug,	 and	 provides	 a	 number	 of	 possible	 ways	 to	 tune	 parallel	 performance	
either	 through	 environment	 settings	 at	 runtime	 (e.g.	 loop	 scheduling)	 or	 by	
minor	modifications	to	directives.	
	
(b)	For	the	foreseeable	future,	and	certainly	for	the	near	future,	the	majority	of	
use	cases	were	thought	to	involve	analysis	of	DCD	files	that	should	fit	into	single-
node	memory	(64GB	to	128GB	available	on	ARCHER)	in	their	entirety.	
	
(c)	 Memory	 profiling	 of	 a	 more	 sophisticated	 version	 of	 the	 IFST	 algorithm	
revealed	 memory	 usage	 to	 be	 a	 bottleneck.	 Whilst	 some	 memory-intensive	
bookkeeping	 variables	 could	 be	 eliminated	 by	 restructuring	 the	 code	 to	 use	 a	
three-dimensional	 vector	 of	Voxels	 as	 opposed	 to	 the	 current	 one-dimensional	
vector	of	Voxels,	it	was	deemed	that	one	shared-memory	instance	with	N	threads	
would	be	less	likely	to	hit	the	single-node	memory	bottleneck	than	N	distributed-
memory	instances,	which	would	all	likely	be	duplicating	some	data.		
	

(d)	 It	avoids	 the	need	 to	 resolve	contention	 issues	on	reading	DCD	 files,	which	
was	originally	anticipated	to	be	necessary	and	planned	as	Work	Package	4.		
	
OpenMP	Implementation	
	
The	 computationally	 intensive	 section	 of	 the	 restructured	 serial	 IFST	 code	
executes	 the	 KNN	 algorithm	 after	 the	 DCD	 file	 has	 been	 read	 in	 and	 its	water	
molecules	distributed	over	the	grid’s	voxels.	This	section	starts	with	three	nested	
loops	 over	 the	 x,	 y	 and	 z	 dimensions	 of	 the	 grid,	 and	 is	 therefore	 naturally	
parallelised	with	an	omp	for	construct	(embedded	in	an	omp	parallel	region):	
	
#pragma omp for collapse(3) schedule(runtime)	
for (unsigned int xvoxel=0; xvoxel < xvoxels; xvoxel++)
 {
 for(unsigned int yvoxel=0; yvoxel < yvoxels; yvoxel++)
 {
 for(unsigned int zvoxel=0; zvoxel < zvoxels; zvoxel++)
 {
 .
 .
In	 order	 to	 obtain	 good	 performance	 it	 was	 found	 to	 be	 essential	 to	 use	 the	
collapse	 clause	 to	 collapse	 the	 iterations	 of	 all	 three	 loops	 into	 one	 larger	
iteration	 space	 of	 tasks,	 which	 are	 then	 assigned	 to	 available	 threads	 in	
accordance	with	the	specified	scheduling	policy3.	This	amounts	to	one	thread	for	
each	 voxel	 tackling	 the	 computation	 of	 k	 nearest	 neighbours	 and	 entropy	
contributions	for	waters	located	in	that	particular	voxel.		
	
The	 runtime	 schedule	 was	 chosen	 to	 allow	 for	 easy	 experimentation	 with	
different	 thread	 scheduling	 policies	 (static,	 dynamic,	 guided,	 or	 auto)	 without	
needing	 to	 rebuild	 the	 code	 by	 setting	 the	 environment	 variable	
OMP_SCHEDULE.	If	OMP_SCHEDULE	is	not	defined	at	runtime	the	default	thread	
scheduling	behaviour	depends	on	the	compiler.	The	GNU	compiler,	typically	used	
to	compile	Solvaware,	defaults	 to	dynamic	scheduling	with	a	chunk	size	of	1	 in	
case	OMP_SCHEDULE	is	undefined.		
	
In	 order	 to	 avoid	 a	 performance	 penalty	 due	 to	 synchronisation	 on	 writes	 to	
shared	 variables,	 which	 would	 need	 to	 be	 protected,	 the	 contributions	 to	 the	
system’s	 total	 entropy	 as	 well	 as	 to	 the	 spatially	 dependent	 distributions	 of	
entropy	and	density	were	written	to	threadprivate	variables	 inside	the	parallel	
loop	and	manually	reduced	to	the	shared	variables	in	a	critical	region	following	
the	parallel	loop.	Results	were	verified	to	be	correct.	
	
	

																																																								
3 OpenMP API, version 4.0 - July 2013 – sections 2.7.1 and 4.1.
Available at http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

	
Figure	 4	 -	walltime	 spent	 in	 parallelised	 IFST	 calculation	 for	 cb7amo	benchmark.	
Analysing	1000	DCD	frames,	with	OMP_SCHEDULE	not	set	hence	corresponding	to	
dynamic	thread	scheduling	with	chunksize	1	according	to	the	GCC	default.		
	

	
Figure	 5	 -	 Speedup	 of	 parallelised	 IFST	 calculation	 on	 ARCHER	 for	 cb7amo	
benchmark	(same	data	as	figure	4).		
	

	
To	 summarise,	 the	 KNN	 algorithm	 and	 IFST	 calculation	 as	 a	 whole	 have	 been	
optimised	 serially,	 and	 parallelised	 to	 make	 efficient	 use	 of	 ARCHER.	 Timing	
results	for	the	parallelised	IFST	calculation	show	excellent	scaling	–	see	figures		4	
and	5	–	with	parallel	efficiency	of	85%	at	24	threads.		
	

WP3		Implement	k-means	clustering	
	
A	new	utility	has	been	added	to	the	repository	called	ClusterDensityByKMeans.	
This	utility	takes	uses	the	following	inputs.		
	

• The	 system	 PSF	 and	 PDB	 files	 generated	 in	 stage	 2	 of	 the	workflow	 in	
figure	1	

• The	DCD	file	generated	in	stage	4	of	the	workflow	in	figure	1	
• A	user	defined	number	of	frames.	
• A	user	defined	hydration	site	radius	
• A	user	defined	region	of	interest,	specified	by	a	point	in	3D	and	a	radius	
	

The	utility	generates	a	PDB	file	containing	atoms	at	regions	with	a	high	number	
density	of	water.	The	clustering	was	achieved	using	a	k-means	approach.	More	
specifically,	 the	 water	 positions	 from	 each	 frame	 were	 overlaid	 to	 create	 a	
density	profile.	These	points	were	 then	clustered	using	 the	k-means	algorithm,	
exiting	 when	 all	 water	 positions	 were	 within	 the	 user	 defined	 hydration	 site	
radius	from	a	cluster	centre.	 	The	resulting	PDB	can	be	visualised	in	VMD	or	an	
alternative	molecular	visualiser.	
	

WP4		Optimise	I/O	of	Molecular	Dynamics	trajectory	
	
The	 project	 proposal	 for	 this	work	 package	was	 based	 on	 a	 concern	 that	 each	
instance	 (e.g.	MPI	 process)	 of	 the	 analysis	 software	 reads	 the	 same	 3GB-10GB	
NAMD	trajectory	and	that	this	would	cause	I/O	file	contention	issues	if	 they	all	
attempt	to	read	at	the	same	time.	Options	considered	were	to	stagger	the	reads,	
split	up	 the	DCD	 files,	or	pre-process	 the	 trajectories.	However	as	discussed	 in	
the	 section	 on	work	 package	 2,	 the	 shared	memory	 approach	 adopted	 for	 the	
IFST	analysis	resolves	the	concern	over	potential	file	contention	issues.		
	

WP5	Extend	functionality	of	Solvaware	package	
	
A	 number	 of	 further	 enhancements	 were	 made	 to	 the	 Solvaware	 package	 in	
accordance	 with	 the	 intended	 goals	 set	 out	 in	 the	 project	 proposal.	 These	
include:	
	
	

• The	addition	of	an	additional	water	model	(TIP3P).	
• The	addition	of	another	forcefield	(CHARMM36)	
• The	facility	to	perform	energy	minimisation	on	the	solute	in	preparation	

for	MD	simulation	

• Automated	analysis	of	MD	trajectory	quality	fed	back	to	the	user	as	part	
of	the	workflow.	Example	output	of	the	temperature	and	energy	is	shown	
in	Figure	6	and	Figure	7	respectively.	

	

	
	
Figure	 6	 –	 Output	 of	 the	 temperature	 from	 the	 automated	 analysis	 of	 MD	
trajectory	quality	
	

	
	
Figure	7	–	Output	of	the	energy	from	the	automated	analysis	of	MD	trajectory	
quality	
	

4.5 Conclusion	
Solvaware	has	been	ported	to	ARCHER,	giving	the	ARCHER	community	access	to	
high-quality	 software	 for	 the	 analysis	 of	 biomolecular	 hydration.	 The	 software	
has	 been	 parallelised	 using	 OpenMP,	 the	 efficiency	 has	 been	 dramatically	
increased,	and	the	functionality	has	been	improved.	

