
Implementation of a highly scalable aeroacoustic

module based on the Ffowcs-Williams and

Hawkings analogy within the open-source CFD

software Code_Saturne

Stefano Rolfo, Charles Moulinec and David R. Emerson

Scientific Computing Department, STFC Daresbury Laboratory, Warrington

24th October 2016

2 Aeroacoustics with Code_Saturne: eCSE04-13

Abstract

This work presents the implementation of a Ffowcs-Williams and Hawkings

acoustic analogy within Code_Saturne. The implementation takes into account sur-

face (loading and thickness) and volume (quadrupole) integrals. It relies on an

advance-in-time formulation to avoid disk storage of large amount of data for the

acoustic propagation. The formulation is verified against an analytical test case using

360 receivers and the scalability of the module is assessed for configurations made

of up to 1.2 billion cells and 100 receivers, using up to 49,152 cores on ARCHER.

1. Introduction

Predicting noise is important for many engineering applications ranging from aerospace

(rotor noise generated by helicopters and turboprops, for instance) to combustion, to

car manufacture industry and to electrical engineering as for electrical appliances. The

noise evolution can be directly computed by the compressible Navier-Stokes equations

through Direct Numerical Simulation (DNS). However, DNS is a very computationally

demanding approach where all length and time scales of the turbulent spectrum have to

be resolved. For this reason DNS is still limited, industry-wise, to moderate Reynolds

numbers and relatively simple geometries. Noise predictions further increase the compu-

tational requirements since noise levels might be required very far away from the noise

source locations. As a consequence, very large computational domains, which might not

be necessary from a pure hydrodynamic point of view, are mandatory. A very well estab-

lished technique to reduce computational demand consists of separating the computation

of the noise sources, which can be performed using different computational fluid dynam-

ics (CFD) methodologies, from the propagation of the sound itself, assuming there is no

feedback from the noise generation. This assumption is well verified in the case of sub-

sonic flows (i.e. Mach number (M) less than 1) and when the noise sources are compact

with the sound propagating into a fluid at rest (a compact source is a source region which

is small compared to the acoustic wave length). This strategy for modelling noise is re-

ferred to as hybrid computational aeroacoustics (CAA) and the theory is known as the

Aeroacoustics with Code_Saturne: eCSE04-13 3

aeroacoustic analogy.

2. Module description

2.1. Equations

The Ffowcs-Williams and Hawkings (FWH) equation [3] is the most general form of

the Lighthill’s acoustic analogy [4] and can be derived as an exact rearrangement of the

Navier-Stokes equations. The method is based on the definition of an arbitrary control

surface f = 0 which encloses the fluid (this corresponds to f < 0). The configuration can

be represented by the fluid at rest plus a distribution of sources at f = 0 (see figure 1).

Figure 1: Sketch of the FWH analogy.

The FWH continuous equation takes the form of an inhomogeneous wave equation (see

Appendix A for the full nomenclature) and reads:

1
c2

∂2 p′

∂t
− ∇2 p′ = �2 p′ =

∂2Ti jH (f)
∂xi∂x j

−
∂Liδ (f)
∂xi

+
∂ρ0Uin̂iδ (f)

∂t
(1)

4 Aeroacoustics with Code_Saturne: eCSE04-13

with H being the Heaviside function H (f) =


1 if f > 0

0 if f ≤ 0
and δ (f) =


1 if f = 0

0 if f , 0
.

Ti j is the Lighthill’s stress tensor

Ti j = ρuiu j − τi j +
(
p′ − c2ρ′

)
δi j (2)

Li the linear momentum

Li = Pi jn̂ j + ρui (un − vn)

and

Ui =

(
1 −

ρ

ρo

)
vi +

ρui

ρ0

An integral formulation of the solution has been proposed by Farassat and Succi [2],

where the acoustic pressure fluctuations p′ can be expressed as the summation of three

different contributions:

p′ = p′L + p′T + p′Q (3)

where p′L is the loading noise, p′T the thickness noise and p′Q the quadrupole noise. The

analytical definition of the different terms reads:

4πp′L (x, t) =
1
c

ˆ

f =0

[
L̇r

r (1 − Mr)2

]
ret

dS +

ˆ

f =0

[
Lr − Lm

r2 (1 − Mr)2

]
ret

dS +
1
c

ˆ

f =0

Lr

(
rṀr + c

(
Mr − M2

))
r2 (1 − Mr)3


ret

dS

(4)

4πp′T (x, t) =

ˆ

f =0

ρ0

(
U̇n + Uṅ

)
r (1 − Mr)2


ret

dS +

ˆ

f =0

ρ0Un

(
rṀr + c

(
Mr − M2

))
r2 (1 − Mr)3


ret

dS (5)

4πp′Q (x, t) =

ˆ
f>0

[K1

c2r
+

K2

cr2 +
K3

r3

]
ret

dV (6)

with

K1 =
T̈rr

(1 − Mr)3 +
M̈rTrr + 3ṀrṪrr

(1 − Mr)4 +
3Ṁ2

r Trr

(1 − Mr)5

K2 =
−Ṫii

(1 − Mr)2−
4ṪMr + 2TṀr + Ṁ2

r Trr

(1 − Mr)3 +
3
[(

1 − M2
)

Ṫrr − 2ṀrTMr − MiṀiTrr

]
(1 − Mr)4 +

6Ṁr

(
1 − M2

)
Trr

(1 − Mr)5

Aeroacoustics with Code_Saturne: eCSE04-13 5

K3 =
2TMM −

(
1 − M2

)
Tii

(1 − Mr)3 −
6
(
1 − M2

)
TMr

(1 − Mr)4 +
3
(
1 − M2

)
Trr

(1 − Mr)5

The ˙ stands for the first time derivative (i.e. L̇ = ∂L/∂t) and the subscript r indicates the

projection of a vector in the r̂i direction (i.e Lr = Li · r̂i).

2.2. Advance-in-time formulation

The retarded time formulation presented above implies that the formulation is expressed

in terms of reception time at the receiver. This means that for a given receiver time t the

disturbances are emitted at different times tret depending on the relative position between

the receiver and the source. tret is expressed as:

tret = t −
‖x (t) − y (tret)‖

c
=

r (tret)
c

where c is the speed of sound, x (t) is the receiver position and y (t) is the source position

(see figure 1 for a graphical definition of the parameters). To circumvent this problem

an advance-in-time formulation is adopted, following the one proposed by Casalino [1].

In this case the time used to compute the acoustics is the emission time and the time at

which the disturbance reaches the receiver is computed using:

tadv = t + T = t +
r (t)

c
(7)

With this formulation, only one instance of the CFD field is required and the memory

requirement is transferred to the receiver, the number of receivers (about a few hundreds

at most) being in general much smaller than the size of the CFD mesh.

2.3. Module implementation

Two different implementations of the module have been tested, the main difference between

them being the memory allocation for the time varying acoustic variables at the receiver

point (i.e. p′T (x, t)). For every acoustic variable an uneven bidimensional array (i.e. a

non-square matrix) is allocated where the number of columns is the number of receivers,

6 Aeroacoustics with Code_Saturne: eCSE04-13

and the length of each column mi is computed as:

mi =

⌊
1
δt

ri,max

c

⌋
with i = 1, ..Nrec (8)

with δt being the acoustic time step, ri,max the maximum distance between the ith receiver

and the sources, c the speed of sound and b c the floor function. The length of each

columns mi depends on the maximum distance between the noise source distribution and

the ith receiver position and can be different for each receiver. In the first implementation

(see Algorithm 1) the same memory is allocated to each MPI rank. This implementa-

tion has the advantage that parallel summation to compute the integrals (4), (5) and (6)

is only performed when the results are written to the disk. However, the main drawback

of this algorithm is that it keeps in memory a large amount of data. With Algorithm 2

the memory requirements are alleviated since the receivers are evenly distributed across

the MPI ranks, but with the disadvantage of requiring more frequent MPI operations.

When computing loading and thickness noise only, the implementation without distribut-

ing the receivers across the MPI tasks is still acceptable even for a few hundreds receivers,

whereas when the quadrupole contribution is also considered it is mandatory to evenly

distribute them across the MPI tasks. A more detailed description of the two implement-

ations is given in Appendix B.

3. Results

This section reports results of the module implementation as well as a comparison of the

scalability of the code without and with the FWH module. The validation is conducted

using the analytical test case of the scattering of a wave plane from a rigid cylinder (see

section §3.1.) and the numerical test case of a flow around a circular cylinder at Re =

150 (see section §3.2.). The number of receivers is set to 360 for these cases. For the

scalability tests the Reynolds number has been increased to 3, 900 to allow the use of

Large-Eddy Simulation (LES) with meshes having up to 1.2 billion cells. The number of

receivers is set to 100. All the simulations involving the new acoustic module have been

Aeroacoustics with Code_Saturne: eCSE04-13 7

performed using the compressible module of Code_Saturne.

3.1. Scattering of a plane wave by a rigid cylinder

The first test case to validate the method deals with the scattering of a plane wave impinging

on a rigid cylinder. Figure 2 shows a sketch of the problem. This test case has an ana-

lytical solution. The resulting pressure is a function of the time, the distance from the

centre of the cylinder and the angle measured from the direction of the incoming wave.

Its expression reads:

p′ (r, t, θ) ' −P

√
D
πr
ψs (θ) exp (ik (r − ct)) (9)

with ψs (θ) =

√
2

kD

∞∑
m=0

εm sin (γm) exp (−iγm) cos (mθ). For m = 0, ε0 = 1, whereas for

m > 0, εm = 2. The pressure on the solid cylinder surface has also an analytical definition

which reads:

pw (θ, t) =
8P
πkD

exp (ickt)
∞∑

m=0

cos (mθ)
Em

exp
(
i
(
πm
2
− γm

))
(10)

where P is the wave amplitude, k the wave number and D the cylinder diameter. The

amplitude Em and the phase angle γm are combinations of Bessel functions and their value

for a case of kD = 6 is given in table 1. This table reports only the first nine elements

of the series that have been used for the definition of the analytical pressure at the wall.

8 Aeroacoustics with Code_Saturne: eCSE04-13

Figure 2: Sketch of the scattering of a
plane wave by a rigid cylinder.

m γ [o] E m γ [o] E

0 133.76 0.9389 5 -1.53 2.2610

1 54.24 0.4597 6 -0.13 8.967

2 -1.99 0.4319 7 0.00 40.86

3 -25.09 0.4175 8 0.00 212.6

4 -11.01 0.6965 9 0.00 1249

Table 1: Phase angle and amplitude for
kD = 6.

This specific case is a linear problem, therefore only surface integrals of equations (4)

and (5) are considered1 and the integration surface is coincident with the cylinder wall.

Figure 3 reports the time series of the scattered pressure at three different locations (i.e.

θ = 00, 900 and 1800), showing a very good agreement between the FWH analogy and

the analytical solution. This very good agreement is also confirmed by the directivity

pattern presented in figure 4.

(a) θ = 0o (b) θ = 90o (c) θ = 180o

Figure 3: Schematic of the FWH analogy.

1The loading noise is actually the only contribution since the velocity is 0 which implies that the thick-
ness noise is also 0.

Aeroacoustics with Code_Saturne: eCSE04-13 9

Figure 4: Directivity pattern for the scattered pressure from a rigid cylinder.

3.2. Flow around a circular cylinder

The second test case is the flow around a circular cylinder. The flow is considered as lam-

inar, unsteady and bidimensional (i.e. Re = 150) to test the linear part of the propagation.

Three Mach numbers have been used, i.e. M = 0.1, 0.2 and 0.3 respectively. Two 2D

meshes have been generated, M01 which has 27, 000 cells in the cross plane and 176 cells

around the cylinder and, M02 which has 105, 000 cells in the cross plane and 384 cells

around the cylinder. Firstly for validation purposes, values of the averaged drag coef-

ficients CD and Strouhal number S t computed using the Code_Saturne’s compressible

module, are compared with the results of a Code_Saturne’s incompressible simulation in

the same conditions and with the data from literature. Table 2 shows the values of CD

and the Strouhal number for different calculations using Code_Saturne’s incompressible

10 Aeroacoustics with Code_Saturne: eCSE04-13

and compressible algorithms for several Mach numbers. A good agreement is observed

between both compressible and incompresible approaches and with the reference data.

The power spectral density of the time varying lift coefficient is also computed and the

comparison between the different calculations is shown in figure 5.

Ref M01 M01 M02 M02 M02

ρ = const M = 0.1 M = 0.1 M = 0.2 M = 0.3

CD 1.33 1.326 1.300 1.330 1.363 1.35

S t 0.182 0.183 0.181 0.186 0.183 0.19

Table 2: Comparison of the drag coefficient CD and Strouhal number S t for the flow
around a cylinder at Re = 150. The reference value of the Strouhal number is computed
by Roshko’s formula [5].

10-1 100 101

St

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

P
S
D

M01 ρ= const

M01 M= 0. 1

M02 M= 0. 1

M02 M= 0. 2

M02 M= 0. 3

Figure 5: Comparison of the power spectral density of the lift coefficients CL for different
cases of the flow around a laminar cylinder at Re = 150.

One of the advantages of the FWH formulation over any other acoustic analogy is the

possibility to locate the control surface in any part of the flow domain and not only in

the linear region of the acoustic wave propagation. Figure 6 shows the time history of

Aeroacoustics with Code_Saturne: eCSE04-13 11

the acoustic pressure p′ at three different angular locations and at a distance Rx = 50D

from the cylinder centre. Three different integration surfaces are located at R1 = 0.5D

(solid wall), R2 = 0.55D and R = 2.5D (see figures 6a, 6b and 6c). Results obtained

from the first two integration surfaces are in very good agreement between each other

showing the good implementation of the permeable formulation. This is also confirmed

by the directivity pattern of figure 7a. Results from further away from the wall integration

surface are instead characterised by higher fluctuations. This could be caused by the fact

that the CFD schemes are second order in space and time and the mesh resolution is not

fine enough. This deficiency of the method has also been highlighted by Casalino [1]. To

test 3D meshes and verify the influence of the spanwise width and its resolution, the 2D

mesh M01 has been extruded in the third direction with two different lengths and number

of cells. Directivity patterns for the two cases are shown in figures 7b and 7c presenting

a good agreement between the 2D and 3D formulations.

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

p
,

R=0.5

R=0.55

R=2.50

(a) θ = 0o

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

p
,

R=0.5

R=0.55

R=2.50

(b) θ = 90o

0.0 0.2 0.4 0.6 0.8 1.0

Time

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

p
,

R=0.5

R=0.55

R=2.50

(c) θ = 180o

Figure 6: Time history of the acoustic pressure p′ = p′L + p′T for the flow around a
cylinder at Re = 150 and M = 0.1. The receivers are located at a distance R = 50D from
the cylinder centre and the results are obtained using M01.

3.3. Scalability of the code

The scalability of Code_Saturne with the new module is tested using different meshes of

different sizes. The number of receivers is set to 100 for all the simulations. Except for

the largest tests using a 1.2 billion cell mesh, all the other tests are carried out using 3

configurations, which performance are compared against each other: the first one using

12 Aeroacoustics with Code_Saturne: eCSE04-13

0°

45°

90°

135°

180°

225°

270°

315°

2.0e-04
6.0e-04

1.0e-03
1.4e-03

1.8e-03

R=0.5

R=0.55

R=2.50

(a) Comparison between different
integration surfaces.

0°

45°

90°

135°

180°

225°

270°

315°

2.0e-04
6.0e-04

1.0e-03
1.4e-03

1.8e-03

2D R= 0. 5

3D R= 0. 50 Lz = 1

3D R= 0. 55 Lz = 1

(b) Comparison between 2D and
3D meshes. The 3D one is ob-
tained by extruding M01 with 5
layers to get a total span length of
Lz = 1D.

0°

45°

90°

135°

180°

225°

270°

315°

2.0e-04
6.0e-04

1.0e-03
1.4e-03

1.8e-03

2D R= 0. 5

3D R= 0. 50 Lz = 10

3D R= 0. 55 Lz = 10

(c) Comparison between 2D and
3D meshes. The 3D one is ob-
tained by extruding M01 with 51
layers to get a total span length of
Lz = 10D.

Figure 7: Directivity pattern for the flow around a cylinder at Re = 150 and M = 0.1.
The receivers are located at a distance of R = 50D from the cylinder centre. The results
are obtained using M01 and different extrusions in the spanwise direction.

Code_Saturne alone, the second one with the addition of the FWH module with only

loading and thickness noise and, the third one using also the quadrupole noise. Using the

FWH module produces very similar scaling profiles as the ones of Code_Saturne alone

as can be seen in figure 8. Figure 8a shows the scalability for the flow around a circular

cylinder at Re = 150 and M = 0.2 using a bidimensional mesh made of 105,000 cells

(M02). The addition of the computation of the loading and thickness noise increases the

CPU time by 3% to 10%. The addition of the quadrupole integral increases the CPU time

by 10% to 30%, depending on the number of cores being used.

Similar increases in CPU times are also observed for larger meshes of 38 millions cells

(see figure 8b) and 150 million cells (see figure 8c), respectively. For these cases the

Reynolds number has been increased to 3,900 while the Mach number has been kept to

0.2. The 2D cross plane mesh is made of about 146,000 cells and several extrusion layers

are used to build the 3D meshes. The cases with the 38 million (see figure 9a) and 150

million cell meshes (see figure 9b) have also been tested on an IBM Blue Gene/Q up

to 32,768 MPI tasks to demonstrate the portability of the code with the added module.

Similar performance as the ones obtained on ARCHER are observed. Finally the full

module has been tested on a very large mesh of 1.2 billion cells up to 49,152 MPI tasks,

Aeroacoustics with Code_Saturne: eCSE04-13 13

which corresponds to 44% of the full system (see figure 10). Very good scalability has

been observed in this latter case with an efficiency of 87% going from 24,576 to 49,152

MPI tasks.

4 8 16 24 32
no MPI tasks

0.2

1.0

1.8

2.6
3.4
4.2

T
im

e
 [

s]

Ideal Scaling

CS
CS+FWH pt pL
CS+FWH pt pL pQ

(a) Scalability test for the 2D mesh
made of 105,000 cells.

800 1600 3000
no MPI tasks

2

3

4

6

8

T
im

e
 [

s]

Ideal Scaling

CS
CS+FWH pt pL
CS+FWH pt pL pQ

(b) Scalability test for the 3D mesh
made of 38M cells.

1500 3000 6000
no MPI tasks

5

8

10

12

15

18

T
im

e
 [

s]

Ideal Scaling

CS
CS+FWH pt pL
CS+FWH pt pL pQ

(c) Scalability test for the 3D mesh
made of 150M cells.

Figure 8: Scalability tests for several types of meshes. They are run on ARCHER using
up to 6,144 MPI tasks.

4.0e+03 8.0e+03 1.6e+04
no MPI tasks

2

5

9

15

T
im

e
 [

s]

Ideal Scaling

CS
CS+FWH pt pL
CS+FWH pt pL pQ

(a) Scalability test for the 3D mesh made of 38M
cells.

8.0e+03 1.6e+04 3.2e+04
no MPI tasks

10

15

20

30

40

T
im

e
 [

s]

Ideal Scaling

CS
CS+FWH pt pL
CS+FWH pt pL pQ

(b) Scalability test for the 3D mesh made of 150M
cells.

Figure 9: Scalability tests for several 3D meshes. They are run on a Blue Gene/Q using
up to 32,768 MPI tasks.

4. Conclusions

In this work an aeroacoustic module based on the Ffowcs-Williams and Hawkings ana-

logy has been implemented in Code_Saturne. The module has been tested against both

14 Aeroacoustics with Code_Saturne: eCSE04-13

12000 22000 32000 42000
no MPI tasks

80

100

120

140

160
180

T
im

e
 [

s]

Ideal Scaling
CS+FWH pt pL pQ

Figure 10: Scalability test for the 1.2 billion cell mesh on ARCHER.

analytical and numerical solutions, showing the correct implementation of the formula-

tion that can be used with both solid and permeable surfaces. The scalability of the code

has been accessed with meshes having up to 1.2 billion cells. The addition of the mod-

ule introduces a marginal increase in CPU time, for the surface integrals only. A more

substantial addition of computing time is observed when the quadrupole sources are also

considered and this could amount for a 30% increase in CPU time. However, the slope

of the scalability profiles is not affected by the addition of the FWH module, showing

similar trends of reduction of the CPU time with the increase of the number of MPI tasks

used. It has also been shown that the module is able to be run on a large number of MPI

tasks, i.e. up to 44% of ARCHER, exhibiting an efficiency of 87% going from 24,576 to

49,152 MPI tasks.

5. Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER UK Na-

tional Supercomputing Service http://www.archer.ac.uk. The authors would also like

to thank the Hartree Centre for testing the scalability of the new module on their Blue

Gene/Qs.

http://www.archer.ac.uk

Aeroacoustics with Code_Saturne: eCSE04-13 15

References

[1] D. Casalino. Analytical and numerical methods in vortex-body aeroacoustics. PhD

thesis, PhD thesis, Politcnico di Torino et Ecole Centrale de Lyon, 2002.

[2] F. Farassat and G. P. Succi. The prediction of helicopter rotor discrete frequency

noise. In In: American Helicopter Society, Annual Forum, 1982, DC, American

Helicopter Society, p. 497-507., volume 1, pages 497–507, 1982.

[3] J. E. Ffowcs Williams and D. L. Hawkings. Sound generation by turbulence and sur-

faces in arbitrary motion. Philosophical Transactions of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences, 264(1151):321–342, 1969.

[4] M. J. Lighthill. On sound generated aerodynamically. i. general theory. Proceedings

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

211(1107):564–587, 1952.

[5] A. Roshko. Experiments on the flow past a circular cylinder at very high reynolds

number. Journal of Fluid Mechanics, 10(3):345–356, 1961.

16 Aeroacoustics with Code_Saturne: eCSE04-13

A Full nomenclature used in the FWH formulation

The list below gives the definition of all the parameters introduced in the formulation of

the FWH analogy

• ρ density, ρ0 reference density, c speed of sound

• ni normal to the surface, ri = xi − yi distance between source and receiver,

r = ‖xi − yi‖ module of the distance between source and receiver

• ui fluid velocity, vi source velocity, Mi =
vi

c
vector Mach number of a source

• Ti j = ρuiu j−τi j +
(
p′ − c2ρ′

)
δi j Lighthill’s stress tensor, Lii = L11 + L22 + L33 trace

of Li j

• Li = Pi jn̂ j + ρui (un − vn) Linear momentum

• Ui =

(
1 −

ρ

ρo

)
vi +

ρui

ρ0

• Un = Uin̂i, U̇n = U̇in̂i, Uṅ = Uin̂i

• Mr = Mir̂i, Ṁn = Ṁin̂i

• Lr = Lir̂i, L̇r = L̇ir̂i, LM = LiMi

• TMM = Ti jMiM j, TMr = Ti jMir̂ j, TṀr = Ti jṀir̂ j, ṪMr = Ṫi jMir̂ j, Ṫrr = Ṫi jr̂ir̂ j,

T̈rr = T̈i jr̂ir̂ j,

• p′L loading noise

• p′T thickness noise

• p′Q quadrupole noise

Aeroacoustics with Code_Saturne: eCSE04-13 17

B FWH module algorithms in Code_Saturne

In this section the algorithms for the implementation of the FWH module are presented.

For the definition of the variables such as Li, Ui, Ti j please refer to Appendix A.

Algorithm 1 FWH algorithm without distribution of the receivers across the MPI tasks
for 1 to total_number_of_time_steps do

Resolution of the compressible Navier-Stokes equations
if first_iteration then

User definition of the number of receivers and their position
Creation and memory allocation of the acoustic variables

end if
Computation of n̂i, Li and Ui Ti j and their relative time derivatives
for i = 1 to total_number_of_receivers do

Computation of ri, r̂i and r
Projection (dot product) of several quantities (i.e. Li) on ri

Computation of p′L, p′T and p′Q
end for
if iteration_to_damp_the_acoustic_results then

Creation of a buffer memory to be used to write the data
Parallel summation of all the contributions
Write of the buffer memory on disk
Update of the FWH memory

end if
if last_iteration then

Parallel summation of all the contributions
Write of the full results on disk
Deallocation of the FWH memory

end if
end for

18 Aeroacoustics with Code_Saturne: eCSE04-13

Algorithm 2 FWH algorithm with distribution of the receivers across the MPI tasks
for 1 to total_number_of_time_steps do

Resolution of the compressible Navier-Stokes equations
if first_iteration then

User definition of the number of receivers and their position
Distribution of the receivers across the MPI ranks
Creation and local memory allocation of the acoustic variables depending on the
local number of receivers

end if
Computation of n̂i, Li and Ui Ti j and their relative time derivatives
for i = 1 to local_number_of_receivers do

Retrieving in which MPI rank the ith receiver is located
Allocation of the support variables to compute the acoustic pressures
Computation of ri, r̂i and r
Projection (dot product) of several quantities (i.e. Li) on ri

Computation of p′L, p′T and p′Q
Parallel summation of the contributions and broadcast of the results to the MPI
ranks where the ith receiver is allocated
Deallocation of the support memory

end for
if iteration_to_damp_the_acoustic_results then

Creation of a buffer memory to be used for data writing
Write of the buffer memory on disk
Update of the FWH memory

end if
if last_iteration then

Write of the full results on disk
Deallocation of the FWH memory

end if
end for

