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1. Introduction 
Non-equilibrium gas flows represent a fundamental modelling challenge and exist in many 

industrial applications and scientific research facilities, including mass spectrometry, low-pressure 
environments, vacuum pumps, micro-electro-mechanical systems (MEMS), high-altitude vehicles, 
and porous media. The extent of the non-equilibrium state is usually measured by the Knudsen 
number, Kn, which is the ratio of the gas molecular mean free path to the characteristic macroscopic 
length scale of the flow. If the Knudsen number is very small (Kn<0.001), continuum theory is 
considered to be valid and the no-slip boundary condition can be applied i.e. the Navier-Stokes-
Fourier (NSF) equations can be used in the prediction of flow fields. When the Knudsen number lies 
in the range 0.001<Kn<0.1, the flow is in the slip regime and the NSF equations can only be used if 
the wall boundary conditions are modified to account for velocity-slip and temperature-jump. For 
0.1<Kn<10, the flow enters the transition regime and the NSF equations are no longer able to predict 
the flow field with any degree of accuracy. Kinetic theory approaches, such as the Boltzmann 
equation or direct simulation Monte Carlo (DSMC), can be used in this regime. For the Boltzmann 
equation, the complexity of the collision term makes it difficult to use in all but simple problems. In 
the case of DSMC, the computational cost is prohibitive and, apart from flow with high Kn, 
simulations are limited to 2-D and low-speed problems can take weeks to solve. When Kn>10, the 
flow is in the free-molecular regime and molecular collisions can be ignored. Without collisions, 
kinetic methods offer a computationally efficient approach. However, in the early transition regime 
(0.1<Kn<1), the moment method offers the best approach for capturing rarefied phenomena. More 
physics is embedded in the moment equations than in the NSF equations with only a modest increase 
in computational cost. 

We have successfully demonstrated that the moment equations can be used to study a range of 
classic problems including Couette flow, Poiseuille flow, and Kramers’ problem which have all been 
studied theoretically (Gu et al 2010; Gu & Emerson 2014). Numerical investigations of 2-D driven 
cavity flow (Gu et al 2009) and flow past a circular cylinder (Gu et al 2019) have demonstrated that 
the Method of Moments has great potential. However, there is currently no software available that can 
solve non-equilibrium flows in the early transition regime (0.1<Kn<1) in 3-D complex geometries 
with a computational efficiency similar to conventional Computational Fluid Dynamics (CFD) 
problems. An understanding of the flow in the transition regime is essential to design, predict, and 
operate a wide range of practical devices. It is now timely and beneficial to develop software which 
will bridge the gap between the continuum approach and kinetic theory. The open-source CFD 
software, Code_Saturne (https://www.code-saturne.org/cms/), which performs well on ARCHER, 
provides a well-defined and flexible platform to solve the moment equations. It already has a wide 
and growing range of academic and industrial users and this enhancement will expand its capability 
into a new research and industrial dimension by developing and implementing a rarefied gas 
dynamics module with the moment equations. 

2. Extended thermodynamic governing equations 

2.1. Conventional hydrodynamic model - the NSF equations 
The traditional hydrodynamic quantities of density, ρ, velocity, ,iu and temperature, T, correspond 

to the first five lowest-order moments of the molecular distribution function. The governing equations 
of these hydrodynamic quantities for a dilute gas can be obtained from the Boltzmann equation and 
represent mass, momentum, and energy conservation laws, respectively (Struchtrup 2005): 
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where t and ix  are the temporal and spatial coordinates, respectively, and any suffix i, j, k represents 
the usual summation convention. The pressure, p, is related to the temperature and density by the ideal 
gas law, p RTρ= , where R is the specific gas constant. However, the stress term, ijσ , and heat flux 
term, iq , given in equations (2) and (3) are unknown. The classical way to close this set of equations 
is through a Chapman-Enskog (CE) expansion of the molecular distribution function in terms of Kn  
around the Maxwellian which is first-order in Hermite polynomials. The zeroth-order CE expansion 
yields the Euler equations and the first-order approximation of ijσ  and iq , for Maxwell molecules, 
gives (Chapman & Cowling 1970, Struchtrup 2005): 
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in which µ is the viscosity and the angular brackets denote the traceless part of a symmetric tensor. 
Equation (4) expresses an important transport mechanism for iu  and :T  the gradient transport 
mechanism and the superscript G is used to emphasise its importance. Let  
    and   G G

ij ij i iq qσ σ= =  (5) 
and insert equations (4) and (5) into equations (2) and (3) results in the traditional hydrodynamic 
equations. 

2.2.  A second moment closure model - the R13 equations 
As the value of Kn increases, more moments are needed to accurately describe any non-

equilibrium phenomena. Grad (1949) truncated the distribution function to the incomplete third-order 
in Hermite polynomials ( 13Gf ). Grad was one of the pioneers to introduce ijσ  and iq  as extended 
variables and derived a set of governing equations for them from the Boltzmann equation. For 
Maxwell molecules, the stress and heat flux equations are (Struchtrup 2005): 
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Here, ijkm , ijR and Δ  represent the difference between the true value of the higher moments and their 
approximated value with 13Gf . In Grad’s original method, such deviations were not introduced, so 
that 0ijk ijm R= = Δ =  which results in the well-known G13 equations. To close the set of equations, 
(1)-(3), (6) and (7), Struchtrup & Torrilhon (2003) and Struchtrup (2005) regularised the G13 
equations and obtained the following closures: 
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Struchtrup (2005) denoted this set of 13 moment equations with the above closure as the R13 
equations. 

2.3.  Extending the hydrodynamic model- the R26 equations 
It was found (Gu et al. 2010; Young 2011; Gu & Emerson 2014) that the R13 are not adequate 

enough to capture the Knudsen layer in Kramers’ problem and the regularised 26 moment equations 
(R26) are required to accurately reproduce the velocity defect found with kinetic data. However, both 
the R13 and R26 equations are able to capture many of the non-equilibrium phenomena observed 
using kinetic theory. These include effects such as the tangential heat flux in planar Couette flow and 
the bimodal temperature profile in planar force-driven Poiseuille flow (Taheri & Struchtrup 2009; 
Taheri et al. 2009; Gu & Emerson 2007, 2009). Since equations (10) and (11) are algebraic 
approximations for ijkm  and ,ijR  they have no mechanism to produce a boundary layer for themselves 

near the wall. Alternatively, the governing equations of ijkm , ijR  and Δ  derived from the Boltzmann 
equation can be used to provide information required in equations (6) and (7). They are (Gu & 
Emerson 2009): 
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in which, ,ijkM ijℜ and ℵ  are the nonlinear source terms (Gu & Emerson 2009). Here, ijklφ , ijkψ  and 

iΩ  are the difference between the true value of the higher moments and their approximated value 
with 26Gf . In the R26 equations (Gu & Emerson 2009), they were obtained by a Chapman-Enskog 
expansion. For convenience, they can be expressed as gradient transport terms and the high-order 
nonlinear terms, respectively, by 
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Here NL
ijklφ , NL

ijkψ  and NL
iΩ  are the remaining nonlinear terms of ijklφ , ijkψ  and iΩ , respectively, and 

are provided by Gu and Emerson (2009).  The values of the collision constants, ,Aσ ,qA ,mA 1,RA 2,RA

1,AΔ 2 ,AΔ ,Aφ Aψ and ,AΩ depend on the molecular collision model adopted and represent the relaxation 
time-scale for each moment. They are given in Table 1 for the case of Maxwell molecules (Truesdell 
& Muncaster 1980; Struchtrup 2005), as employed in the present study. Although a dilute monatomic 
gas is employed, all the findings in the present study have relevance to realistic gases, such as air. 

Aσ  qA  mA  1RA  2RA  1AΔ  2AΔ  Aφ  Aψ  AΩ  

1.0 2/3 3/2 7/6 2/3 2/3 2/3 2.097 1.698 1.0 

 
TABLE 1.  Collision constants in the moment equations for Maxwell molecules 

3. Wall boundary conditions 
To apply any of the foregoing models to flows in confined geometries, appropriate wall boundary 

conditions are required to determine a unique solution. Gu & Emerson (2009) obtained a set of wall 
boundary conditions for the R26 equations based on Maxwell’s kinetic wall boundary condition 
(Maxwell 1879) and a fifth-order approximation of the molecular distribution function in Hermite 
polynomials. In a frame where the coordinates are attached to the wall, with in  the normal vector out 
of the wall pointing towards the gas and iτ  the tangential vector of the wall, the slip velocity parallel 
to the wall, uτ , and temperature-jump conditions are: 
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Here ,nnσ ,nτσ ,qτ ,nnm τ ,nnnm ,nnR ,nnτψ τΩ  and nnnnφ  are the tangential and normal components of ,ijσ
,iq ,ijkm ,ijR ,ijkψ iΩ  and ijklφ  relative to the wall, respectively. It should be noted that the normal 

velocity at the wall, 0,nu =  since there is no gas flow through the wall. The accommodation 
coefficient,α , represents the fraction of gas molecules which will be diffusively reflected with a 
Maxwellian distribution at the temperature of the wall, wT . The remaining fraction ( )1 α−  of gas 
molecules will undergo specular reflection. The rest of the wall boundary conditions are listed in 
Appendix C of Gu & Emerson (2009). Equations (17) and (18) are similar to the velocity-slip and 
temperature-jump conditions for the NSF equations (Cercignani 1975; Gad-el-Hak 1999) with the 
additional underlined terms on the right hand side providing the higher-order moment contributions 
which are not available in the NSF model. However, these higher-order moment terms can be used to 
derive a second-order slip boundary condition for the NSF equations (Taheri & Struchtrup 2010). The 
solution of the NSF equations in the present study is associated with the wall boundary conditions 
(17) and (18) without the underlined terms. 

4. Module implementation 
A module containing four sets of equations of different complexity was developed for 

Code_Saturne without alteration of the core code. In the current implementation, the user subroutine 
facility provided by Code_Saturne was used to incorporate the modules into Code_Saturne. All the 



added subroutines were written in Fortran 90. The newly developed module will be merged into the 
core code in collaboration with the development team of Code_Saturne in EDF. All the subroutines 
have been transferred to the EDF Code_Saturne team. 
 

 
Figure 1 Orientation of a solid wall  

4.1 NSF with velocity-slip and temperature-jump wall boundary conditions 

Boundary arrays of “gas_velocity_slip” and “gas_temperature_jump” are created in the 
subroutine “cs_user_parameters_base.c”.  The wall orientation is determined by the normal and 
tangential tensors, ,n  aτ  and bτ , respectively. They are calculated, along with stresses and heat 
fluxes, in the subroutine “cs_user_boundary_conditions.f90”. The wall normal tensor, ,n  is 

determined by the geometry and its components { }, ,x y zn n n are provided by Code_Saturne.  The 

tangential tensor, ,aτ  is parallel to the slip velocity. Its components are determined by the 
corresponding components of the slip velocity as  
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The tangential tensor, bτ , is then calculated by = ×τ τb an . 
Boundary arrays of “gas_velocity_slip” and “gas_temperature_jump” are evaluated by the wall 

boundary conditions (17) and (18) without the underlined terms in the subroutine 
“cs_user_boundary_conditions.f90”. They are set as Dirichlet boundary conditions for velocity and 
temperature equations. The components of the slip velocity are calculated from the stresses and heat 
fluxes by 
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4.2 Moment equations and their wall boundary conditions 

Users are able to solve additional scalar convection and diffusion equations with sources within 
the user subroutine facility in Code_Saturne. This functionality of the code is used to implement the 
moment equations. Although the moments are tensors of different ranks, the individual Cartesian 
component of each tensor can be treated as a scalar, .Φ  Both cell centre and boundary arrays of all 
the added variables are created in the subroutine “cs_user_parameters_base.c”. Arrays of derivatives 
are created in the subroutine “cs_usr_modules.f90”. Additional subroutines are created to calculate 
the source terms for the moment equations inside “cs_usr_modules.f90”. These source terms are fed 
into the solver through the subroutine “cs_user_source_terms.f90”. The wall boundary conditions are 
implemented in the subroutine “cs_user_boundary_conditions.f90”. To calculate the boundary value 
accurately, the derivatives of variables on the wall are required. However, Code_Saturne only 
calculates the derivatives at the cell centre. There is no straightforward way to calculate the 
derivatives on the wall in general. They are approximated by the values at the cell adjacent to the 
wall. This may lose some accuracy of the solution, particularly when the wall surface is complicated. 
To reduce any possible inaccuracy, a fine structured mesh with regular cells close to the wall is 
desirable. 

The added primary variables for the various cases are, respectively,   
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We have run the test cases for all of the parts of the module. However, as can be seen, the R13 and 
R20 equations are subsets of the R26 part and we will mainly focus on the validation cases of the R26 
part in the report for simplicity. 

5. Validation 
Different types of geometry were used to test the implementation. Two-dimensional planar or 

curved surface and three-dimensional surface were adopted in the examples presented in the following 
subsections. 



5.1 Channel Poiseuille flow 
All the parts of the module are first tested for channel Poiseuille flows at different Knudsen 

numbers against the results of our in-house code, THOR, which is a 2-D multi-block parallel high-
order moment equation solver. The channel configuration is shown in figure 2. The channel has a 
length of L and width of H. A gas with a mean velocity of um goes through the channel. The velocity 
profiles at L/2 are compared with the corresponding solutions from THOR, as shown in figure 3. The 
agreement between the two codes is excellent for all four newly added implementation: (a) NSF with 
slip; (b) the R13; (c) the R20 and (d) the R26 moment equations. 

 
Figure 2 Channel flow configuration 

 
 

  

  
 

Figure 3 Comparison between THOR and Code_Saturne (CS). Velocity profiles for channel 
Poiseuille flows at different Knudsen numbers  
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5.2 Driven Cavity Flow  
A rarefied gas flow of Kn=0.5 in a square driven cavity with a length of L is computed with all 

four parts of the module. The results from the R26 part are shown in figure 4, and compared with the 
data from the solution of the Boltzmann equation (BE) with the discrete velocity method (DVM). The 
profile of the velocity, U, along the y direction through the cavity centre is in good agreement with the 
BE-DVM solution, as indicated in figure 4(a). However, the R26 moment equations underpredict the 
velocity, V, along the x direction through the cavity centre in comparison with the BE-DVM solution. 
The discrepancy between the R26 and BE-DVM solutions is largely due to the limitation of the 
macroscopic models rather than the implementation of the moment method in Code_Saturne. 

 

  
Figure 4 Velocity profiles along the lines through the cavity centre 

 

 
 
 

Figure 5 Flow past a circular cylinder. Streamlines and temperature field for Kn=0.05 and Re=20.  
              Top half : Code_Saturne; Bottom half: THOR 
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5.3 Flow past a circular stationary cylinder  
The flow past a circular cylinder is computed with Code_Saturne to test the capability of the new 

added module over a curved surface. A structured grid is used around the cylinder and a triangular 
mesh is employed far away from the cylinder. At the inlet, outlet and side, symmetrical boundaries 
using a structured grid is used to satisfy the boundary conditions required by Code_Saturne. A total of 
180,400 cells are used. Flows with a range of Reynolds number and Knudsen number are simulated. 
The vortex length predicted by the R26 module in Code_Saturne is slightly longer than that 
determined by THOR (Gu et al. 2019), as shown in figure 5 for Kn=0.05 and Re=20. However, both 
codes predict the thermal field well. The difference in the results might be explained by the fact that 
the added module is coupled with the incompressible solver in Code_Saturne, while the Mach number 
for this problem is greater than 0.6 and compressibility is important. The relationship between Re,
Kn  and Ma is (Gu et al. 2019): 

 2Ma ReKn
γπ

= . (27) 

It can be seen from eq. (27) than Ma  is proportional to the product of Re  and Kn . When the gas 
departs from the continuum state, i.e. Kn≫ 0, the Reynolds number effect on the compressibility of 
the gas increases significantly. In the future, it is important to couple the added module with the 
compressible pressure solver. To do so, the energy equation, rather than the temperature field, given 
by equation (3), needs to be solved. New wall boundary conditions are required for the energy 
equation, but this was beyond the scope of the current project. This feature needs developing in the 
future. 
 

5.4 Flow past a sphere 
The flow past a sphere is computed with Code_Saturne for several Knudsen numbers in the slip 

regime to test the capability of the new added module over a three-dimensional curved solid surface.   
A structured grid is used around the sphere and triangular meshing employed far away from the 
sphere. Again, a structured grid is used for the boundary conditions at the inlet, outlet and side 
symmetrical boundaries, as required by Code_Saturne. A total of 7,135,116 cells are created. Shown 
in figure 6 is the relative pressure distribution around the sphere for Kn=0.01 and Re=50, 
predicted by Code_Saturne's R26 moment method. At the front of the sphere, the gas is compressed 
as the pressure raises above the free stream value. The gas expands as it passes the sphere and the 
local pressure is lower than the free stream pressure. As a result, a three-dimensional vortex ring is 
created behind the sphere, as shown in figure 7. It is worth noting that this is the very first time this 
type of simulation is possible. 

 
Figure 6 Relative pressure distributions in the vertical plane of a gas past a sphere. Kn=0.01 and 

Re=50 



 
 

 
Figure 7 A vortex ring behind a sphere. Kn=0.01 and Re=50 

 

5.5 Flow in porous media 

To test the added module for a highly complex geometry, the flow past a cluster of randomly 
distributed cylinders is computed. This type of configuration is often used to study the permeability of 
porous media. The geometry shown in figure 8 has been provided by the University of Strathclyde. To 
calculate the wall boundary conditions, several layers of prisms/hexahedral cells, mimicking a 
structured grid are required around each cylinder. The velocity vectors shown in figure 8 indicate that 
the gas finds its optimal path through the porous media depending on the width of the gap between 
each cylinder. The velocity profiles at the exit and middle of the computational domain, as indicated 
in figure 8, are presented in figure 9. They are very close to the values obtained by the University of 
Strathclyde using kinetic theory. 

  

 
 

Figure 8 Velocity vectors of the gas through a cluster of randomly distributed cylinders 
 
 



  
Figure 9 Velocity profiles at the exit and middle of the computational domain 

5.6 Scalability of Code_Saturne with the new module 
The scalability of the code with the added module is measured using the case of the flow past a 

sphere, in which 7,135,116 cells are used.  The timing obtained on one node of ARCHER with 24 
cores is adopted as the base in the calculation of the speedup shown in figure 10. Compared with the 
ideal speedup, the case using NSF with the slip boundary condition has a linear scaling up to 20 
nodes. The performance deteriorates when more than 20 nodes are used for this case. The linear 
scaling goes up to 50 nodes for the R13case. Interestingly, the R26 case has a super-linear scaling 
when less than 80 nodes are used. When more than 80 nodes are used, the speedup begins to drop as 
the number of cells in one node is reduced and the communication among the cores increases. 
 

 
Figure 10 Speedup of the non-equilibrium gas flow module on ARCHER 

 

6. Conclusions 
The capability of the open-source CFD code, Code_Saturne, has been extended to simulate non-
equilibrium gas flow by adding four modules based on the Method of Moments. The Cartesian 
components of the higher rank moments are solved as primary variables. The user subroutine facility 
has been utilised to implement the additional equations. The newly added module has been tested for 
two- and three-dimensional geometries with both planar and curved solid surfaces: (i) a regular 
channel configuration; (ii) the flow past an infinite circular cylinder (2-D); (iii) the flow past a sphere 
(3-D). The cases have been validated against available data to ensure the accuracy of the 
implementation. All the subroutines have been made available to the Code_Saturne development team 
in EDF R&D in order to make them part of the official release of the code. The new 3-D module, 
developed for massively parallel computers opens up many new areas of physics. For instance, some 
future work that could enhance the capabilities of this new module would include coupling to the 
compressible solver to handle flows with higher Mach numbers. Other features that would broaden 
the impact of the work could be the introduction of physics associated with evaporation. 
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