
PANDORA Upgrade: Particle Dispersion in

Bigger Turbulent Boxes

Thorsten Wittemeier, University of Southampton

David Scott, Edinburgh Parallel Computing Centre

John Shrimpton, University of Southampton

Version 1.2, March 22, 2019

t.wittemeier@soton.ac.uk

2 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

1. Introduction

PANDORA [6, 8] is a pseudo-spectral flow solver providing solutions to the Navier-

Stokes equations in a 2π3 domain for isotropic and homogenous turbulent flow using

FFTW [5] and MPI. It also includes the tracking of a large number of point Lagrangian

particles. PANDORA is a pseudo-spectral direct numerical simulation code and as such

does not need any halos for parallelisation. However, the Lagrangian particles stay within

the part of the fluid domain associated to the process they are on. For computing the

equation of motion for the particles it is necessary to interpolate the fluid velocity at the

position of the particle. In particular when higher order interpolation schemes are used,

fluid information from parts of the domain associated with other processes is needed.

This information is provided by halos. The performance of PANDORA, in particular

scalability and memory use, is heavily dominated by the way the halos are implemented.

A new version of PANDORA based on the libraries FFTW and PETSc [1, 2, 3] was

developed within this eCSE project. The aim of the project was to overcome the limi-

tations of the previous code in terms of memory use and efficiency. The parallelisation

was changed from a 1D (’slab’) decomposition to a 2D (’pencil’) decomposition. All

of the parallelisation was implemented using distributed arrays as provided by PETSc.

The global transforms that are necessary to perform FFT in all three directions have been

implemented using the parallel transpose functions of FFTW.

1.1. Performance issues with the previous code

Several issues prevented the use of the code for large-scale computations. First of all,

a significant amount of the data stored in the old code is not necessary. In a pseudo-

spectral DNS code, real-space information is only needed for computing the non-linear

term of the Navier-Stokes equation from the velocity and vorticity (in the rotational for-

mulation). When particles are included, an additional use of real-space information is the

interpolation of fluid velocities at the particle position. It is therefore not necessary to

permanently store the real-space information. Once the non-linear term is computed, the

vorticity is also not needed any further. The 1D spatial decomposition (slab decomposi-

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 3

tion) determines the memory load per compute node and a puts a limit to the maximum

size of simulations domains. The use of halo layers compounds this issue. There is a MPI

overhead with this method - splitting the sub- domains into thinner and thinner slices (ie

more cores per job) increases the parallel data transfer of the fluid information and the

proportion of halos in the memory. Furthermore the parallelisation of the old code was

inflexible and required 2n number of cores, which means on ARCHER nodes typically 8

out of 24 cores are idle. The size of the velocity halo can be drastically reduced by simply

changing the 1D (slab) decomposition to a 2D (pencil) decomposition.

Dealiasing in PANDORA is performed using the 2/3 rule, which means that the 1/3

highest wavenumbers are set to zero. Taking into account all three dimensions, this means

that only (2/3)3 = 8/27 of the arrays contain non-zero values. The Fourier transforms are

performed in 1D and 2D in the slab decomposition and in 1D in the pencil decomposition.

Therefore it can be avoided to store zeroes by zero-padding of the buffered array before

each transform. The particle arrays are allocated to a fixed size which accounts for a

possible higher number of particles on a given process. By using dynamic allocation, a

further reduction in memory use can be achieved.

Two fluid arrays (one in real space, the other in wave space) were identified that could

easily be replaced by scalar variables within the loop for the computation of the Navier-

Stokes equation, thus freeing up a significant amount of memory.

In PANDORA, the real space arrays are used to store coordinates, fluid velocity, fluid

vorticity, Runge-Kutta buffer and the non-linear term. All of these arrays include a halo,

whereas this is only (temporarily) necessary for the velocity and only for the interpolation

of the fluid velocity at the particle position. The coordinates do not need to be stored at

all. They are sufficiently simple to compute them directly when needed. Similarly, the

wave number does not need to be saved and can be computed when needed.

1.2. Goals of the eCSE project

The first goal of the project was to reduce the per-node memory usage. The minimum

success metric was to undertake computations on ARCHER of at least 40963 grid points

on 128 ARCHER nodes and ideally 81923 domains on around 1000 ARCHER nodes.

4 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

This involved changing the domain decomposition from 1D to 2D as well as using the

real-space data for computing the non-linear terms and solving the Maxey-Riley equation

for the Lagrangian particles immediately after the Fourier transform rather than storing

the real-space data permanently. A further part of this work package was to use the halo

arrays only for the fluid velocity and only when PANDORA is being used with particles.

Another main objective was to improve the parallel I/O performance of the code and

speed up the data transfer as well as enable the use of HDF5 and NetCDF. First tests

of parallel particle restart files had already been successfully performed using MPI I/O

prior to the eCSE project. However, the unequal number of particles per process leads to

additional complications not present for the fluid restart files. An additional part of the

project was to open-source and document the code and to demonstrate scaling up to 1000

cores.

2. Implementation of the new PANDORA 2.0 code

The PANDORA code was reimplemented in its entirety using parts of the existing code

and making extensive use of PETSc. Table 1 summarises the major differences. First of

all, the 1D decomposition of the old code was replaced with a 2D decomposition. This

was achieved using distributed arrays as provided by the PETSc library. Whereas the 2/3

rule is used for dealiasing in both codes, the higher, i.e. aliased, wave modes are not

stored in PANDORA 2.0, thus saving a significant amount of memory. Only those arrays

that are strictly necessary are stored in the new implementation of PANDORA.

Most of the program flow is executed on 2D slabs, the orientation of which is dic-

tated by the consecutive Fourier transforms and global transposes. In order to achieve

this, we split MPI communicators using the minimum coordinate in the third direction

as colour. This is easily done using PETSc and was implemented in a similar way to

that used in the TPLS code, which was optimised in a previous eCSE project [4]. The

global transpose between Fourier transforms, which was previously implemented by be-

spoke MPI routines, has now been delegated to the FFTW-MPI library, which chooses

the fastest algorithm at initialisation, as is also the case for the initialisation of the Fast

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 5

Fourier Transforms. Code for both in-place and out-of place communication has been

implemented, the latter enabling MPI AllToAll communication, but evidently using more

memory.

Parallel file input and output uses the MPI-IO routines as defined in the MPI 3.0 stan-

dard in both codes. However the new code accesses these routines indirectly through

PETSc. This allows for an easy access to other file formats like HDF5 or VTK with-

out major changes. We chose MPI-IO for reading and writing the restart files due to its

performance. Using PETSc, small file conversion routines can be easily implemented.

As the particle arrays in the old PANDORA code were not implemented in natural For-

tran ordering, efficient particle restart file reading and writing in parallel was difficult to

achieve. We have fixed this problem in the new code. The number of particles on each

process is now updated at each time step and the particles are stored in appropriately sized

arrays, whereas the old code had predefined arrays of a fixed size. This led to a significant

reduction in memory use.

PANDORA 2.0 makes extensive use of Fortran 2003/2008 functionality where appro-

priate. In particular the iso C bindings provide a useful means of standardising all variable

types. Although the code can be used with the standard 32-bit version of PETSc, it is 64-

bit enabled, allowing domain sizes with more than 2 147 483 648 = 231 grid points.

The program flow has been slightly modified, mainly to make better use of data al-

ready available in memory, as shown in figures 1 and table 2 for the previous code and

figure 2 and table 3 for the new code. Both codes use the same memory-saving third-order

Runge Kutta time-stepping scheme [10], but as a comparison of tables 2 and 3 shows, it

has been reorganised to directly use information in fast memory rather than separating the

solution of the Navier-Stokes and Maxey-Riley equations and the Runge-Kutta scheme as

in the old code. The equation of motion for the particles is now solved before the Navier-

Stokes equation. This has two advantages. First of all, the real-space fluid velocity field

can be used directly after computing the non-linear term and can then be discarded. The

halos are made accessible for the velocity interpolation at the particle position by obtain-

ing PETSc local vectors from the global vectors (i.e. arrays containing halos as opposed

to arrays without). The other advantage of solving the particle equation first is that this

6 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

Table 1: Comparison of PANDORA code and PANDORA 2.0

PANDORA PANDORA 2.0

Decomposition Slab (1D) Pencil (2D)

own MPI routines PETSc

Number of MPI 2n, no more than number of any; no more than product of

processes grid points in the parallelised the number of wavemodes in

direction the parallelised direction

Halos all real-space arrays only velocity (particle simulations)

Dealiasing 2/3 Rule: 2/3 Rule:

Set wavemodes Do not save wavemodes

|k| > 1/3N to zero |k| > 1/3N

→ 13 = 1 → (2/3)3 = 8/27

Wave-space arrays Velocity, vorticity, Velocity, Runge-Kutta

Runge-Kutta, wave numbers

1D real-space / - Velocity, vorticity

2D wave-space arrays

Real-space arrays Velocity, vorticity, coordinates 2D velocity and vorticity,

Particle simulations only:

(3D) velocity

Global transforms own MPI routines FFTW-MPI

Particles Maxey-Riley equation Passive Particles and Maxey-Riley

(drag and gravity) equation (drag and gravity)

Velocity interpolation Polynomial interpolation and Lagrange interpolation (Neville

Lagrange interpolation (direct algorithm), order only limited by

1solution), 1st - 4th order the halo nodes (cannot exceed size

of neighbouring processes)

Parallel file I/O MPI-IO, own routines PETSc: MPI-IO, but easy to implement

other formats like VTK, HDF5

Language Fortran 90/95 Fortran 2003/2008

Data types Generic Fortran Almost exclusively ANSI C:

iso c bindings, PETSc, FFTW

Documentation comments in source code only Doxygen

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 7

Calculate
Runge

Kutta (RK3)

Fluid

RK3

Stage 1

Particle

RK3

Stage 1

Fluid

RK3

Stage 2

Particle

RK3

Stage 2

Fluid

RK3

Stage 3

Particle

RK3

Stage 3

Fluid

RK3

Stage 4

Particle

RK3

Stage 4

Figure 1: Flowchart of a timestep in PANDORA. In each timestep a Runge-Kutta scheme

is performed, followed by fluid and particle analysis. The Runga-Kutta scheme consists

of four stages, each of which is composed of a fluid calculation followed by a particle

calculation [11].

8 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

Stage 1: U1 = Un

G1 = F(Un, tn)

Stage 2: U2 = U1 +
1
3
∆tG1

G2 = −
5
9
G1 + F(U2, tn +

1
3
∆t)

Stage 3: U3 = U2 +
15
16
∆tG1

G3 = −
153
128

G2 + F(U3, tn +
3
4
∆t)

Stage 4: Un+1 = U2 +
8
15

G3

Table 2: Runge-Kutta scheme used in PANDORA [11]

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 9

Runge

Kutta (RK3)

Fluid

non-

linear

term

Particle

RK3

Stage 1

Fluid

RK3

Stage 1

Fluid

non-

linear

term

Particle

RK3

Stage 2

Fluid

RK3

Stage 2

Fluid

non-

linear

term

Particle

RK3

Stage 3

Fluid

RK3

Stage 3

Figure 2: Flowchart of a timestep in PANDORA 2.0. In each timestep a Runge-Kutta

scheme is performed, followed by fluid and particle analysis. The Runga-Kutta scheme

consists of three stages. As opposed to the previous PANDORA code, the particle Runge-

Kutta routines are performed after calculating the non-linear term and before solving the

Navier-Stokes equation.

10 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

Stage 1: U1 = Un

G1 = F(Un, tn)

U2 = U1 +
1
3
∆tG1

Stage 2: G2 = −
5
9
G1 + F(U2, tn +

1
3
∆t)

U3 = U2 +
15
16
∆tG1

Stage 3: G3 = −
153
128

G2 + F(U3, tn +
3
4
∆t)

Un+1 = U2 +
8
15

G3

Table 3: Runge-Kutta scheme used in PANDORA 2.0. The scheme is essentially the

same as in the old PANDORA code, but organised differently to directly use information

that is already in memory.

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 11

allows for a natural way to provide the coupling force in two-way coupled simulations.

The particle code has now been modified to allow for passive particles as well as inertial

particles. Simultaneous simulations of passive and inertial particles are made available

through the particle diameter, where negative diameters are reserved for passive particles

(which obviously do not have a diameter or mass).

The main goal of the project was to reduce the memory use of PANDORA to allow

for bigger simulations with more particles. This was achieved by storing only the data

strictly necessary. Splitting MPI communicators in each of the two parallelised directions

makes it possible to perform the main work on Fourier transforms and global transpose

on two-dimensional slices in parallel. Therefore less memory is needed for buffer arrays.

Since the 2/3 rule for dealiasing is used in PANDORA, it was attempted to avoid real-

space data wherever possible. Applying the 2/3 rule in all three dimensions it can be

seen that in wave-space only (23)/(33) = 8/27 of memory is needed compared to the

corresponding real-space data.

3. Results

3.1. Reduction of memory use

A combination of the above principles led to a significant memory improvement com-

pared to the previous PANDORA code1 as summarised in table 4. It can be seen that

PANDORA 2.0 uses only about a 10th of memory for fluid simulations compared to the

previous version.

For simulations with particles the target was not entirely achieved. This is due to the

fact that, as opposed to the original planning, it was decided to use three-dimensional

real-space velocity arrays for the interpolation of fluid velocities at the particle position.

The original idea to use ghost particles rather than fluid halos turned out to be to difficult

to implement. It also needs to be emphasised that for many particles (more than one per

1Memory use in PANDORA 2.0 is measured exactly using PETSc. For the old PANDORA code,

memory use is estimated based on the size of the main arrays. As can be seen from table 4, the memory

demands of this code would already go beyond available memory on ARCHER on 20483 domains.

12 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

Table 4: Memory improvements in PANDORA 2.0

Grid size (real space) 10243 20483 40963 20483

ARCHER nodes 32 64 128 64

Cores 512 1024 2048 1536

Particles - - - 8,589,934,592

Memory/node in PANDORA (estimate) 20 GB 80 GB - -

Memory/node in PANDORA 2.0 (target) 3.5 GB 14 GB 54 GB 25 GB

Memory/node in PANDORA 2.0 (achieved) 1.9 GB 6.3 GB 23.8 GB 32.5 GB

control volume) fluid halos are more memory saving.

3.2. Enabling simulations on bigger domains

One of the main objectives of this project was to overcome the limitations of the previous

code as to the size of the simulation domain. The new code was successfully tested up

to 81923 domains, using 12288 ARCHER cores. The biggest tests that were performed

during the eCSE project are listed in table 5. Although the largest simulation with par-

ticles was performed on a 20483 grid with one particle per control volume, this is by

no means the absolute limit. This grid size is already sufficiently big to test the correct

implementation of 64-bit integers for the array indexing, which is a prerequisite for any

computing grid or number of particles that goes beyond 2 147 483 648 = 231, as is the case

for 20483 domains. All of these simulations demonstrate that the new code is appropriate

for simulations at very competitive sizes with a moderate use of computing resources.

3.3. Performance of fluid simulations

We performed simulations of a relatively small size to compare the old and new codes.

The 1283 was chosen to allow serial simulations with the old, more memory-consuming

code. The strong scaling is shown in figure 3 with the speed-up on the left-hand side

and the computing time for 10 time steps on the right-hand side. It is immediately ob-

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 13

Table 5: Overview of the largest simulations performed so far

Grid size (real space) 40963 40963 81923 20483

ARCHER nodes (goal) 128 128 1280 64

ARCHER nodes (achieved) 64 128 512 64

Cores 1536 2048 12288 1536

Particles - - - 8,589,934,592

Memory/node in PANDORA 2.0 46.9 GB 23.8 GB 48.0 GB 32.5 GB

100 101 102
Cores

100

101

102

Sp
ee

d-
up

1283 grid
PANDORA 2.0
PANDORA

100 101 102
Cores

10−1

100

101

Ti
m
e
[s
]

1283 grid
PANDORA 2.0
PANDORA

Figure 3: Strong scaling of fluid simulations on ARCHER using PANDORA and PAN-

DORA 2.0. The left-hand side shows the speed-up, the right-hand side the computing

time for 10 time steps on a 1283 domain. The dashed lines indicate ideal scaling.

14 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

100 101 102 103

Cores

100

101

102

103

Ti
m
e
[s
]

1283

5123
10243 20483 40963

Strong scaling

Figure 4: Strong scaling of fluid simulations on ARCHER using PANDORA 2.0. The

computing time for 10 time steps is shown for 1283, 5123, 10243, 20483 and 40963 do-

mains. The dashed lines indicate ideal scaling.

vious that the scaling behaviour of the new code is more complex. While on 16 cores

an almost ideal speed-up is achieved, better than the old PANDORA code, the speed-up

stagnates on more cores. The old code on the other hand shows a linear, but less than

ideal, scaling behaviour. However in all simulations except for the one on 128 cores the

new code is faster. These results can be explained with a significant reduction in comput-

ing time as only non-zero values are included in the wave-space arrays, which leads to a

communication overhead when more processes than necessary are chosen.

As can be seen from figure 4, the good speed-up at the lower end of the scaling

plot can be replicated at larger domain sizes. Although the code does not reach ideal

scalability, it does come close when used on a reasonable number of cores.

The weak scaling is shown in figure 5. The left-hand side shows a comparison of

PANDORA and PANDORA 2.0 under identical conditions, while the right-hand side

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 15

100 101 102 103

Cores

101

102

Ti
m

e
[s

]

1283
2563

5123

10243

2097152 grid points / core
PANDORA 2.0
PANDORA

100 101 102 103 104

Cores

102

103

104

Ti
m

e
[s

]

5123

10243
20483

40963

81923

134217728 grid points / 3 cores
PANDORA 2.0

Figure 5: Weak scaling of fluid simulations on ARCHER using PANDORA and PAN-

DORA 2.0. The left-hand side shows the computing time for 10 time steps on 1283, 2563,

5123 and 10243 domains, the right-hand side shows the computing time for 10 time steps

on 5123, 10243, 20483, 40963 and 81923 domains.

shows larger simulation. It can be seen that, not unexpected for a global spectral code,

the communication overhead leads to longer simulation times with growing domain sizes.

It is also striking that on all domain sizes where a comparison is possible, a significant

speed-up in comparison to the previous PANDORA version has been achieved.

3.4. Performance of fluid simulations with particles

PANDORA has always been intended to be used for turbulence simulations including

Lagrangian inertial particles. In PANDORA 2.0 we have included passive particles so

Lagrangian fluid statistics are another application area. With this purpose in mind, the

scalability of the code with particles is more essential than the performance of pure fluid

simulations. First scalability tests of the new code have been performed on a 2563 grid

with one particle per control volume for strong scaling (left-hand side of figure 6) and

on 2563, 5123, 10243 and 20483 domains, also with one particle per control volume, for

the weak scaling (right-hand side of figure 6). The strong scaling is close to ideal scal-

16 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

100 101 102

Cores

100

101

102

Sp
ee

d-
up

2563 grid

100 101 102 103

Cores

101

102

Ti
m
e
[s
]

16777216 grid points / 3 cores

Figure 6: Strong and weak scaling of PANDORA 2.0 for one time step with one particle

per control volume. The strong scaling simulations were performed on a 2563 domain,

the weak scaling tests on 2563, 5123, 10243 and 20483 domains. The dashed line indicates

ideal scaling.

ability. Only the simulation on 192 cores, corresponding to about 87381 particles per

process, shows minimally less than ideal speed-up, indicating that at this point some of

the communication starts becoming relevant. The weak scaling tests were performed un-

der exactly the same conditions for all domain-sizes, which means that although the work

load per process is about the same, the likelihood of particles moving between different

processes increases, therefore leading to more communication. This is reflected in the

weak scalability results, which show an increase in simulation times. In practice bigger

domains would be typically used to achieve higher Reynolds number. The number of par-

ticles moving between processes will also depend on the particles themselves. Therefore

the weak scalability will need to be revisited for actual applications.

3.5. Parallel I/O

The parallel file reading and writing routines for fluids and particles are largely identical

in PANDORA 2.0, whereas the old code only has a test implementation for particle restart

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 17

files. We therefore limited tests of the restart file routines to the fluid information. Table

6 gives an overview of the results. The difference in file size between PANDORA and

PANDORA 2.0 is due to the omission of non-zero values. Writing times have been

reduced by roughly the time corresponding to the reduction in data volume.

Table 6: Overview of test runs for parallel file writing.

Grid 5123 10243 10243 10243

Cores 64 24 512 1536

File size [Gb] PANDORA 2.0 0.89 7.13 7.13 7.13

File size [Gb] PANDORA 3.01 - 24.05 -

Time [s] PANDORA 2.0 2.174 63.626 14.809 19.196

Time [s] PANDORA 16.642 - 48.743 -

3.6. First validation runs of the new code

We used the well-known dissipation constant Cǫ to compare results of PANDORA 2.0

with some published results [7, 9], as shown in figure 7. Our simulations were performed

on domain sizes ranging from 1283 to 10243. All results are lower than those obtained by

[7], which, as discussed by the authors of that article, could be due to the forcing, which

in our simulations was applied to the lowest two wavemodes. These results are consistent

with results obtained with the previous PANDORA version [12].

4. Conclusions

A new version of PANDORA has been implemented within this eCSE project. The mem-

ory use of the code has been drastically reduced and the parallelisation has been changed

from a slab decomposition to a pencil decomposition, which enables the use of the new

PANDORA 2.0 on very big simulation domains. So far the code has been successfully

tested on simulation grids up to 81923. The strong scalability of simulations with particles

18 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

20 40 60 80 100 120 140 160 180 200
Reλ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C
ǫ

PANDORA 2.0

McComb et al. (2015)

Wang et al. (1996)

Figure 7: The dissipation constant Cǫ computed with PANDORA 2.0 compared to pub-

lished results [7, 9]

has proven to be near ideal scalability. Fluid simulations show reasonably good scaling

behaviour within certain limits, which allow for a good performance on all domain sizes.

The use of PETSc for implementing the parallel arrays as well as parallel file reading

and writing ensures that future extensions are easier to implement. Possible additions

include the implementation of a non-periodic direction, for which the linear algebra rou-

tines provided by PETSc might be useful, and an extended choice of file formats, many of

which are directly accessible through PETSc. As the code follows the Fortran 2003/2008

standards and extensive use of C data types has been made, both through the PETSc and

FFTW libraries and through the ISO C bindings of Fortran, interoperability with C or

C++ functions is significantly easier than in the old PANDORA code.

5. Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER UK Na-

tional Supercomputing Service http://www.archer.ac.uk.

http://www.archer.ac.uk

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 19

References

[1] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Effi-

cient management of parallelism in object oriented numerical software libraries. In

E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in

Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

[2] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune,

Kris Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D.

Gropp, Dinesh Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman

McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F.

Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc Web page.

http://www.mcs.anl.gov/petsc, 2018. URL http://www.mcs.anl.gov/petsc.

[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris

Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp,

Dinesh Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman McInnes,

Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F. Smith, Ste-

fano Zampini, Hong Zhang, and Hong Zhang. PETSc users manual. Technical

Report ANL-95/11 - Revision 3.10, Argonne National Laboratory, 2018. URL

http://www.mcs.anl.gov/petsc.

[4] Iain Bethune, Antonia BK Collis, Lennon ON ARAIGH, David Scott, and Prashant

Valluri. Developing a scalable and flexible high-resolution dns code for two-phase

flows. 2015.

[5] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. In Pro-

ceedings of the IEEE, volume 93, pages 216–231, 2005.

[6] Aditya U Karnik. Direct numerical investigations of dilute dispersed flows in ho-

mogeneous turbulence. PhD thesis, University of Southampton, 2012.

[7] WD McComb, A Berera, SR Yoffe, and MF Linkmann. Energy transfer and dissi-

pation in forced isotropic turbulence. Physical Review E, 91(4):043013, 2015.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

20 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

[8] S. J. Scott. A PDF Based Method for Modelling Polysized Particle Laden Turbulent

Flows Without Size Class Discretization. PhD thesis, Imperial College London,

2006.

[9] Lian-Ping Wang, Shiyi Chen, James G Brasseur, and John C Wyngaard. Exam-

ination of hypotheses in the kolmogorov refined turbulence theory through high-

resolution simulations. part 1. velocity field. Journal of Fluid Mechanics, 309:113–

156, 1996.

[10] JH Williamson. Low-storage runge-kutta schemes. Journal of Computational

Physics, 35(1):48–56, 1980.

[11] Thorsten Wittemeier. Performance Analysis of the DNS and Particle Transport

Model PANDORA. Technical report, University of Southampton, 2016.

[12] Thorsten Wittemeier and John S Shrimpton. Explanation of differences in experi-

mental and computational results for the preferential concentration of inertial parti-

cles. Computers & Fluids, 173:37–41, 2018.

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 21

Appendix - Scalability Data

Table 7: Strong scaling of fluid simulations on ARCHER using PANDORA and PAN-

DORA 2.0. Times are for 10 time steps.

Cores 1 16 32 64 128

Grid 1283 1283 1283 1283 1283

Time [s] PANDORA 2.0 9.43 0.85 1.04 0.93 0.85

Speed-up PANDORA 2.0 1.00 11.14 9.07 10.19 11.07

Time [s] PANDORA 25.67 3.36 1.76 1.11 0.56

Speed-up PANDORA 1.00 7.63 14.58 23.10 45.59

22 eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes

Table 8: Strong scaling of fluid simulations on ARCHER using PANDORA 2.0. Times

are for 10 time steps.

Cores 1 16 3 64

Grid 1283 1283 5123 5123

Time [s] 9.43 0.85 261.51 20.32

Table 9: Strong scaling of fluid simulations on ARCHER using PANDORA 2.0 (contin-

ued). Times are for 10 time steps.

Cores 24 512 192 1024 1536 2048

Grid 10243 10243 20483 20483 40963 40963

Time [s] 681.13 57.34 926.96 188.95 1278.45 1084.16

Table 10: Weak scaling of fluid simulations on ARCHER using PANDORA and PAN-

DORA 2.0. Times are for 10 time steps.

Cores 1 8 64 512

Grid 1283 2563 5123 10243

Time [s] PANDORA 2.0 9.43 12.35 20.32 57.34

Time [s] PANDORA 25.67 49.36 100.44 141.98

Table 11: Weak scaling of fluid simulations on ARCHER using PANDORA 2.0. Times

are for 10 time steps.

Cores 3 24 192 1536 12288

Grid 5123 10243 20483 40963 81923

Time [s] 261.52 681.13 926.96 1278.45 2444.87

eCSE01-11 PANDORA Upgrade: Particle Dispersion in Bigger Turbulent Boxes 23

Table 12: Strong scaling of PANDORA 2.0 for one time step with one particle per control

volume.

Cores 1 3 8 24 96 192 384

Grid 2563 2563 2563 2563 2563 2563 2563

Particles 16777216 16777216 16777216 16777216 16777216 16777216 16777216

Speed-up 1.00 2.87 7.25 20.66 87.29 176.20 300.25

Time [s] 133.91 46.633 18.463 6.481 1.534 0.76 0.45

Table 13: Weak scaling of PANDORA 2.0 for one time step with one particle per control

volume.

Cores 3 24 192 1536

Grid 2563 5123 10243 20483

Particles 16777216 134217728 1073741824 8589934592

Time [s] 46.63 62.65 65.78 73.73

