
Efficient adsorption studies with
DL_MONTE
	

Tom	L.	Underwood,	Tina	Düren,		John	A.	Purton,	Nigel	B.	Wilding	
	

8	March	2019	
	
	

Abstract	
DL_MONTE	is	a	general-purpose	simulation	program	for	applying	the	Monte	
Carlo	method	to	condensed	matter.	Here,	we	provide	an	overview	of	our	recent	
project	to	significantly	improve	the	capabilities	of	DL_MONTE	for	studying	
adsorption.	
	
DL_MONTE	is	accompanied	by	a	Python	toolkit	for	managing	simulation	
workflows	and	performing	data	analysis.	Improving	this	toolkit	was	the	focus	of	
the	project.	We	developed	Python	functions	to	facilitate	analysis	of	time	series	
output	by	DL_MONTE	(and	other	molecular	simulation	programs):	we	developed	
functions	to	calculate	uncertainties	using	block	averaging,	and	to	calculate	the	
correlation	and	equilibration	times	of	time	series.	Moreover,	we	developed	
functions	to	apply	the	multiple	histogram	reweighting	method.	Building	on	these	
functions,	we	developed	a	Python	framework	for	automating	the	task	of	
calculating	a	specified	physical	quantity	to	a	desired	precision	using	DL_MONTE.	
The	framework	can	be	used	to	automate	the	process	of	calculating	an	adsorption	
isotherm	with	DL_MONTE,	and	is	sufficiently	general	that	it	could	be	easily	
adapted	to	treat	other	simulation	programs.		
	
Finally,	we	extended	the	grand-canonical	Monte	Carlo	functionaity	of	the	
DL_MONTE	main	program	to	include	free	energy	calculations.	A	key	application	
of	this	new	functionality	is	pinpointing	the	location	of	liquid-gas	phase	
transitions,	something	which	was	hitherto	intractable	with	DL_MONTE	except	in	
special	cases.	
	

1 Introduction	
Adsorption	is	the	process	whereby	a	substance	(the	adsorbate),	usually	a	fluid,	
forms	a	thin	film	on	an	external	or	internal	surface	of	a	material.	Adsoprtion	
underpins	many	key	fields	of	research,	including	catalysis,	carbon	capture	and	
storage,	and	surface	and	interfacial	phenomena.	There	is	therefore	a	demand	for	
software	which	can	be	used	to	study	adsorption	efficiently,	i.e.	with	minimal	
computational	cost.		
	
Grand-canonical	Monte	Carlo	(GCMC)	[1]	is	a	molecular	simulation	method	
commonly	used	to	study	adsorption.	GCMC	samples	the	equilibrium	states	of	the	

system	at	a	specified	temperature,	system	volume,	and	chemical	potential	(of	the	
adsorbate).		The	key	feature	of	GCMC	is	that	particles	can	be	added	and	removed	
from	the	system	during	the	course	of	the	simulation.	This	affords	it	considerable	
advantages	over	other	molecular	simulation	methods,	including	molecular	
dynamics,	for	studying	adsoption.	
	
DL_MONTE	[2,3]	is	a	general-purpose	Monte	Carlo	program	which	can	be	used	to	
study	adsorption	in	a	wide	range	of	systems	using	GCMC,	including	those	of	
relevance	to	the	fields	given	above.	DL_MONTE	is	part	of	the	suite	of	simulation	
software	developed	by	Daresbury	Laboratory	and	the	Collaborative	
Computational	Project	5	(CCP5),	and	is	accompanied	by	a	Python	toolkit	for	
managing	DL_MONTE	simulation	workflows	and	performing	data	analysis.		
	
We	have	recently	undertaken	an	ARCHER	embedded	CSE	programme	project	
whose	aim	was	to	significantly	improve	the	capabilities	of	DL_MONTE	for	
studying	adsorption.	This	entailed	adding	new	functionality	to	both	the	Python	
toolkitand	the	main	DL_MONTE	program.	In	this	report	we	provide	an	overview	
of	this	new	functionality.	

2 Python	framework	for	automating	simulations	
A	common	task	for	molecular	simulation	is	to	calculate	the	value	of	a	certain	
physical	quantity	X	(e.g.	the	density	of	the	system)	to	a	given	precision.	This	
typically	entails	the	following:	
	

1. Run	a	simulation	of	a	prescribed	length.	
2. Extract	a	value	and	uncertainty	for	X		using	the	time	series	for	X	output	by	

the	simulation.	
3. Check	whether	or	not	the	uncertainty	in	X	is	less	than	the	desired	

precision.	If	it	is,	then	the	task	is	complete.	If	it	is	not,	then	return	to	step	
1:	perform	another	simulation,	starting	where	the	previous	one	left	of,	
extending	the	time	series	for	X.	

	
We	have	developed	Python	tools	to	automate	this	process.	While	the	focus	was	
on	automating	the	process	of	calculating	adsorption	isotherms	(i.e.	calculating	
the	density	of	adsorbate	vs.	chemical	potential,	at	a	given	temperature)	using	
DL_MONTE,	the	framework	is	sufficiently	generalised	that	it	could	be	applied	to	
other	problems	and	simulation	codes.	We	provide	an	overview	of	these	tools	
below.	
	

2.1 Time	series	analysis	
We	first	developed	Python	functions	to	facilitate	step	2	in	the	above	procedure.	
These	were	drawn	upon	when	developing		the	Python	framework	for	automating	
the	above	procedure,	which	is	discussed	in	the	next	subsection.	
	
The	key	output	of	molecular	simulation	programs	is	a	time	series	of	physical	
quantities.	To	extract	a	value	and	an	associated	uncertainty	for	the	physical	
quantity	of	interest,	X,	one	must	analyse	such	time	series.	Analysis	is	complicated	
by	the	fact	that	data	from	the	start	of	a	simulation	must	often	be	disregarded,	

because	it	pertains	to	times	before	the	simulation	has	equilibrated.	Thus	a	
calculation	of	X	from	the	simulation	data	entails	averaging	over	all	values	of	X	in	
the	time	series	after	the	equilibration	time.		
	
Calculating	the	statistical	uncertainty	in	X	is	a	less	straightforward	task.	The	
issue	is	that	nearby	values	of	X	in	the	time	series	are	typically	highly	correlated,	
and	standard	formulae	for	estimating	uncertainties	rely	on	the	observations	
pooled	to	calculate	the	uncertainty	being	uncorrelated.	Block	averaging	[1]	is	a	
standard	method	which	addresses	this	problem.	In	block	averaging,	one	
partitions	the	time	series	–	after	the	equilibration	time	–	into	blocks	whose	
lengths,	the	block	size,	are	significantly	larger	than	the	correlation	time	in	the	
time	series.	The	mean	value	of	X	is	then	evaluated	for	each	block.	The	mean	
values	for	all	blocks	are	then	used	to	evaluate	the	standard	error	of	the	mean	in	
the	conventional	manner	–	which	is	valid	because	the	block	means	should	be	
uncorrelated.	Of	course,	the	validity	of	this	method	hinges	upon	an	appropriate	
choice	of	block	size.	One	must	know	the	correlation	time	for	the	time	series	in	
order	to	inform	this	choice.	
	
We	have	developed	Python	functions	which	can	be	used	to:		

i. determine	whether	or	not	a	given	time	series	has	reached	equilibrium	
ii. provide	an	upper	bound	for	the	equilibration	time	
iii. calculate	the	correlation	time	of	a	time	series	
iv. calculate	an	uncertainty	for	the	physical	quantity	the	time	series	pertains	

to	using	the	block	averaging	method.	
	
These	functions	make	it	significantly	easier	to	calculate	uncertainties	from	the	
output	of	molecular	simulation	programs,	and	to	embed	this	ability	within	
Python	scripts	and	modules.	
	

2.2 Framework	for	automation	
Building	on	the	analysis	functions	just	described,	we	have	developed	a	Python	
framework	which	automates	the	process	of	calculating	a	specified	physical	
quantity	and	its	uncertainty.	The	framework	allows	the	user	to	specify	a	physical	
quantity	to	be	evaluated,	and	either	a	precision	to	which	it	is	to	be	evaluated	to	
or	a	maximum	wall-clock	time	to	dedicate	to	the	calculation.	It	will	then	perform	
back-to-back	DL_MONTE	simulations	until	enough	data	is	gathered	such	that	the	
physical	quantity	is	determined	to	the	desired	precision	or	the	maximum	wall-
clock	time	has	elapsed.	The	framework	also	allows	this	task	to	be	repeated	for	a	
range	of	thermodynamic	parameters	(e.g.	temperature,	pressure),	as	
demonstrated	below.	Moreover,	the	abstraction	in	the	framework	is	such	that	it	
could	easily	be	applied	to	simulation	programs	other	than	DL_MONTE.	
	
The	key	ingredients	of	the	framework	are	Python	classes	Task	and	TaskInterface.	
The	former	corresponds	to	a	simulation	workflow	to	achieve	a	particular	aim.	
Subclasses	of	this	include	Measurement,	which	calculates	a	physical	quantity	and	
its	uncertainty	at	a	given	thermodynamic	parameters,	say,	temperature	and	
chemical	potential;	and	MeasurementSweep,	which	applies	Measurement	to	a	
specified	range	of	thermodynamic	parameters.	Each	Task	instance	has	a		

TaskInterface	attribute	which	defines	how	to	perform	common	simulation	tasks,	
such	as	run	a	simulation,	alter	input	variables,	and	extract	data,	and	is	specific	to	
the	simulation	program,	e.g.	DL_MONTE;	for	each	program,	a	TaskInterface	
interface	must	be	written	which	tells	Task	instances	how	to	perform	the	
common	tasks.	Calling	the	run()	function	of	a		Task	instances	instigates	the	
automated	workflow	corresponding	to	the	Task.	
	

2.3 Example:	Automated	calculation	of	an	isotherm	
Figure	1	shows	the	output	of	the	framework	when	tasked	to	evaluate	the	density	
ρ	vs.	chemical	potential	μ	for	the	kBT/ε=1.5	isotherm	of	the	Lennard-Jones	fluid.	
Each	point	in	the	figure	corresponds	to	a	set	of	GCMC	simulations	performed	
back-to-back	until	a	maximum	wall	clock	time	is	exceeded.	The	salient	features	
of	the	Python	code	used	in	this	case	can	be	found	in	the	following	code	snippet:	
	
#	'simtask'	is	the	package	housing	the	functionality	
import	simtask.task	as	task	
import	simtask.measurement	as	measurement	
	
#	Link	the	framework	to	a	DL_MONTE	executable	
interface	=	task.interface.DLMonteInterface("DLMONTE-SRL.X")	
	
#	Choose	to	calculate	the	number	of	molecules	in	the	system	
nmol_obs	=	task.Observable(("nmol",0))	
observables	=	[nmol_obs]	
	
#	Define	what	constitutes	a	single	'measurement'	
measurement_template	=	measurement.Measurement(interface,	observables,	maxsims=20,	
maxtime=30)	
	
#	Define	the	nature	of	multiple	measurements:	here	
#	we	perform	measurements	at	the	various	'molchempot'	
#	in	the	list	'chempots'	
sweep	=	measurement.MeasurementSweep(param="molchempot",	
												paramvalues=chempots,	
												measurement_template=measurement_template)	
	
#	Instigate	the	workflow	
sweep.run()	
	

	
Figure	1:	Isotherm	for	the	Lennard-Jones	fluid	automatically	generated	by	the	Python	

framework.		
	
	

3 Multiple	histogram	reweighting	
Histogram	reweighting	[4,5]	is	a	powerful	method	which	allows	simulation	data	
obtained	at	certain	thermodynamic	parameters	(e.g.	temperature,	pressure)	to	
be	used	to	make	predictions	at	thermodynamic	parameters	not	explored	by	
simulation.	Single	histogram	reweighting	[4]	is	the	simplest	incarnation	of	the	
method,	and	involves	using	data	obtained	from	a	single	simulation.	
This	method	was	already	implemented	in	the	DL_MONTE	Python	toolkit	–	an	
output	of	a	previous	eCSE	project	[6].	In	this	project	we	have	extended	the	toolkit	
to	be	able	to	perform	multiple	histogram	reweighting	(MHR)	[5],	in	which	data	
from	multiple	simulations	can	be	used.	
	

3.1 Methodology	
Here	we	describe	MHR	within	the	grand-canonical	thermodynamic	ensemble,	
where	the	temperature	T,	volume	V,	and	chemical	potential	μ	of	the	(adsorbate)	
particles	μ	are	fixed.	This	is	the	ensemble	sampled	in	GCMC	simulations.	Note,	
however,	that	MHR	is	a	general	method	which	can	be	applied	to	a	wide	range	of	
thermodynamic	ensembles,	and	so	also	can	our	MHR	software,	as	discussed	
below.	
	

Suppose	we	have	performed	R	GCMC	simulations	at	various	chemical	potentials	
and	temperatures,	μ	1,	μ	2,	…,	μ	R,	and	T1,	T	2,	…,T	R.	MHR	enables	us	to	use	the	data	
from	all	of	these	simulations	to	predict	the	value	of	a	certain	physical	quantity	X	
at	a	temperature	T'		and	chemical	potential	μ'		not	treated	by	any	of	the	
simulations.	The	relevant	equations	are	as	follows:	
	

	
where	β=1/(kBT);	βn=1/(kBTn);	Xni,	Nni,	and	Eni,	are	the	values	of	X,	the	energy	and	
the	number	of	particles	for	the	ith	configuration	in	the	nth	simulation;	Dn	is	the	
number	of	configurations	sampled	in	the	nth	simulation;	and		F1,	F2,	…,	FR	are	
given	by	
	

	
which	must	be	solved	using	an	iterative	procedure.	
	

3.2 Generality	
Our	implementation	of	MHR	is	sufficiently	generalised	that	it	can	treat	a	wide	
range	of	ensembles.	To	elaborate,	a	MHR	function	is	provided	for	applying	to	
thermodynamic	ensembles	with	the	general	form		

	
where	p(Xi)	is	the	probability	of	a	configuration	i	with	a	vector	of	physical	
quantities	Xi	coupled	to	a	vector	of	thermodynamic	parameters	b.	For	instance,	

in	the	grand-canonical	ensemble	

where	Ei	and	Ni	denote	the	energy	and	number	of	particles	for	configurationi.	
However,	for	the	convenience	of	users	MHR	functions	are	provided	for	the	
grand-canonical,	canonical	(fixed	number	of	particles	N,	V	and	T),	and	
isothermal-isobaric	(fixed	N,	pressure,	T)	ensembles	which	take	familiar	
quantities	such	as	Ei	and	Ni		as	arguments	–	to	save	users	from	having	to	
'translate'	into	the	generalised	thermodynamic	ensemble	just	described.	

	
3.3 Example:	Interpolation	of	an	isotherm	
Figure	2	shows	the	results	of	applying	MHR	to	interpolate	the		
kBT/ε=1.5	isotherm	of	the	Lennard-Jones	fluid,	using	GCMC	simulation	data	
obtained	at	three	chemical	potentials.	The	salient	features	of	the	Python	code	
used	in	this	case	can	be	found	in	the	following	code	snippet:	
	
import	multihistogram	
import	numpy	
	
#	The	three	GCMC	simulations	each	output	a	time	series		
#	of	E	and	N.	These	have	been	imported	and	stored	in		
#	'E_data'	and	'N_data',	which	are	both	lists	containing		
#	the	3	E	and	N	time	series	as	arrays.		
#	'sysvol'	and	'kT'	are	the	same	for	all	simulations.		
#	'mu_sims'	contains	the	chemical	potentials	used	in	the		
#	simulations	
	
kT_sims	=	numpy.ones(len(mu_sims))	*	kT	
	
#	We	are	interested	in	the	density;	calculate	the	time	
#	series	
rho_data	=	N_data	/	sysvolume	
	
#	'mu_for_mhr'	is	a	list	of	chemical	potentials	to	
#	reweight	to.	Print	the	density	calculated	using	MHR		
#	at	each	chemical	potential	
for	mu	in	mu_for_mhr:	
					
					rho_mhr	=	multihistogram.reweight_observable_muvt(kT_sims,		
																			mu_sims,	E_data,	N_data,	obs=rhodata,		
																			kT_new=kT,	mu_new=mu)	
	
					print(mu,	rho_mhr)	
	
	

3.4 Limitations	
The	limitations	to	MHR	should	be	emphasised.	The	method	relies	on,	for	the	case	
of	the	grand-canonical	ensemble,	an	overlap	in	the	range	of	E	and	N	sampled	by	
the	simulations.	In	practice	this	means	that	MHR	is	limited	to	making	predictions	
at	T'		and	μ'		'close'	to	those	of	the	simulations.	

	
	
	

Figure	2:	Isotherm	for	the	Lennard-Jones	fluid	obtained		by	applying	MHR	to	DL_MONTE	GCMC	
simulation	data.	

	
	

4 Free	 energy	 methods	 with	 grand-canonical	 Monte	
Carlo	

Liquid-gas	phase	transitions	play	an	important	role	in	adsorption	phenomena,	
and	there	is	much	interest	in	using	molecular	simulation	to	pinpointing	the	
location	of	such	transitions.	Solving	this	problem	entails	calculating	the	
probability	distribution	for	the	density	of	the	fluid,	ρ,	at	various	fluid	chemical	
potentials	μ.	Close	to	the	transition	the	probability	distribution,	p(ρ),	exhibits	
two	local	maxima,	one	at	a	low	density	ρG	which	corresponds	to	the	gas	phase,	
and	one	at	a	high	density	ρL	which	corresponds	to	the	liquid	phase.	Pinpointing	
the	transition	amounts	to	finding	the	μ	at	which	both	peaks	are	of	equal	height.	
Unfortunately,	in	the	vicinity	of	a	phase	transition	calculating	p(ρ)	is	challenging.	
The	issue	is	that	between	the	high-probability	regions	in	p(ρ)	centred	on	ρG	and		
ρL	is	a	region	of	densities	with	extremely	low	probability.	Hence	moving	from	ρG	
and		ρL	and	back	again	–	something	necessary	to	measure	p(ρ)		–	is	typically	an	
event	of	exceedingly	low	probability	that	occurs	only	on	timescales	inaccessible	
to	standard	simulation	methods.	
	
Free	energy	methods	address	such	problems	by	adding	a	fictitious	contribution	to	
the	energy	of	the	system,	a	bias,	which	encourages	movement	between	two	
regions	of	configuration	space	connected	by	a	region	of	low	probability.	The	
appropriate	bias	is	usually	not	known	from	the	outset,	and	is	evolved	during	the	
course	of	the	simulation	until	quick	movement	to	and	from	the	two	regions	is	

eventually	realised.	At	this	point	the	effects	of	the	bias	can	be	removed	from	the	
simulation	data	using	post-processing,	and	the	equilibrium	phase	can	be	
determined.	(See	[2]	for	an	overview	of	free	energy	methods	in	the	context	of	
DL_MONTE).	
	

4.1 New	functionality	
Free	energy	methods	have	been	available	in	DL_MONTE	for	some	time	[2],	
however	they	could	not	be	used	in	conjunction	with	GCMC.	We	have	extended	
the	existing	free	energy	functionality	in	DL_MONTE	to	GCMC;	GCMC	can	now	be	
used	in	conjunction	with	the	many	free	energy	methods	supported	in	
DL_MONTE,	including	umbrella	sampling,	multicanonical	Monte	Carlo,	Wang-
Landau,	and	transition-matrix	Monte	Carlo	[2].	As	alluded	to	above,	a	key	
application	of	this	new	functionality	is	pinpointing	the	location	of	liquid-gas	
phase	transitions.	
	

4.2 Example:	Liquid-gas	coexistence	in	methane	
To	test	this	new	functionality	we	used	transition-matrix	Monte	Carlo	(TMMC)	
with	GCMC,	in	conjunction	with	histogram	reweighting,	in	order	to	pinpoint	the	
liquid-gas	transition	for	methane	(modelled	using	the	TraPPE-EH	force	field	[7])	
at	150K.	Figure	3	shows	the	free	energy	vs.	density	at	various	chemical	
potentials	μ	for	this	system.	The	free	energy	for	density	ρ	here	is	defined	as	
F(ρ)=-ln	p(ρ)		(up	to	an	arbitrary	additive	constant),	where	p(ρ)	is	the	
probability	of	the	system	exhibiting	density	ρ.	Low	F(ρ)	correspond	to	high	p(ρ).	
Each	free	energy	curve	in	the	figure	was	obtained	by	applying	histogram	
reweighting	to	data	from	a	single	TMMC+GCMC	simulation.	Note	that	F(ρ)	
exhibits	two	local	minima,	which	correspond	to	ρG	and	ρL..	At	the	phase	transition	
the	gas	and	liquid	probabilities	are	equal,	and	hence	F(ρG)	and	F(ρL)	are	roughly	
equal.	The	μ	corresponding	to	the	phase	transition	was	determined	by	using	
reweighting	as	described	in	[8].	Note	that	the	ρG	and	ρL	at	the	transition	are	in	
excellent	agreement	with	the	results	in	the	literature	[7].	

	
Figure	3:	Free	energy	profiles	obtained	by	GCMC	free	energy	method	functionality	in	DL_MONTE,	
and	histogram	reweighting,	for	methane	modelled		with	the	TraPPE-EH	force	field.	'C&H'	signifies	

Chen	&	Siepmann	[7].	
	
	

5 Conclusions	
This	project	entailed	adding	new	functionality	to	both	the	DL_MONTE	Python	
toolkit	and	the	DL_MONTE	main	program.	With	regards	to	the	toolkit,	we	
developed	Python	functions	to	facilitate	analysis	of	time	series	output	by	
molecular	simulation	programs.	Building	on	these	functions,	we	developed	a	
Python	framework	for	automating	the	task	of	calculating	a	specified	physical	
quantity	to	a	desired	precision.	One	application	of	the	framework	is	to	automate	
the	process	of	calculating	an	adsorption	isotherm	with	DL_MONTE.	Moreover,	it	
should	be	noted	that	the	framework	is	sufficiently	general	that	it	could	be	easily	
adapted	to	treat	other	simulation	programs.	These	new	Python	tools	are	
beneficial	because	they	reduce	the	'actual	time'	taken	to	solve	a	given	problem,	
where	by	'actual	time'	we	mean	the	total	time	taken	for	the	necessary	workflow	
of	simulations	to	complete,	in	addition	to	the	time	the	user	spends	preparing	
input	files,	writing	their	own	analysis	software,	analysing	data	between	
simulations,	etc.	
	
We	also	developed	Python	functions	for	applying	the	multiple	histogram	
reweighting	(MHR)	method.	MHR	allows	one	to	make	the	most	of	the	data	one	
has	already	generated,	reducing	the	computational	cost	associated	with	
determining	how	a	physical	quantity	(e.g.	density	of	adsorbate)	varies	over	a	
range	of	thermodynamic	conditions.	
	

The	improvement	we	made	to	the	main	DL_MONTE	program	was	to	extend	the	
grand-canonical	Monte	Carlo	(GCMC)	capabilities	of	DL_MONTE	to	include	free	
energy	calculations.	A	key	application	of	this	new	functionality	is	pinpointing	the	
location	of	liquid-gas	phase	transitions,	something	which	was	hitherto	
intractable	with	DL_MONTE	except	in	special	cases.	Keeping	in	mind	that	
DL_MONTE's	flexible	force	field	enables	it	to	treat	a	wide	variety	of	systems,	this	
new	functionality	will	enable	the	liquid-gas	transition	to	be	studied	with	
DL_MONTE	in	a	plethora	of	systems.	This	would	be	useful	for,	e.g.	the	
development	of	models	of	fluids,	and	in	studying	phenomena	where	the	liquid-
gas	transition	plays	a	crucial	role,	such	as	wetting	and	drying.	
	
The	DL_MONTE	homepage	[9]	and	GitLab	project	[10]	describes	how	to	obtain	
access	to	the	main	DL_MONTE	program	and	the	Python	toolkit.	The	
aforementioned	improvements	to	the	main	DL_MONTE	program	are	included	in	
the	latest	release	of	DL_MONTE,	v2.06.	An	initial	release	containing	the	Python	
tools	developed	during	this	project	is	imminent.	
	

References
	
[1]	See,	e.g.,	D.	Frenkel	and	B.	Smit,	'Understanding	molecular	simulation:	from	algorithms	to	
applications',	San	Diego:	Academic	Press	(2002)	
[2]	A.	V.	Brukhno	et	al.,	Mol.	Sim.,	DOI:10.1080/08927022.2019.1569760	(2019)	
[3]	J.	A.	Purton,	J.	C.	Crabtree	&	S.	C.	Parker,	Mol.	Sim.	39,	14	(2013)	
[4]	A.	M.	Ferrenberg	&	R.	H.	Swendsen,	Phys.	Rev.	Lett.	61,	2635	(1988)	
[5]	A.	M.	Ferrenberg	&	R.	H.	Swendsen,	Phys.	Rev.	Lett.	63,	1195	(1989)	
[6]	eCSE04-4	'Implementing	lattice-switch	Monte	Carlo	in	DL_MONTE	to	unlock	efficient	free	
energy	calculations'	
[7]	B.	Chen	&	J.	I.	Siepmann,	J.	Phys.	Chem.	B	103,	5370	(1999)	
[8]	N.	B.	Wilding,	Am.	J.	Phys.	69,	1147	(2001)	
[9]	http://www.ccp5.ac.uk/DL_MONTE	
[10]	http://gitlab.com/dl_monte	
	

Acknowledgements
	
This	work	was	funded	under	the	embedded	CSE	programme	of	the	ARCHER	UK	
National	Supercomputing	Service	(http://www.archer.ac.uk)	

