
Implementation of multi-level contact detection in
LAMMPS

Kevin Stratford, EPCC
Tom Shire, University of Glasgow,

Kevin Hanley, University of Edinburgh

October 2018

AN ARCHER ECSE PROJECT

Contents

1 Introduction 2

2 Background 2
2.1 The LAMMPS multi approach . 3

2.1.1 Stencils: “Newton off" and "Newton on” 3
2.1.2 Parallelism and communication . 3

3 A type-based approach 5
3.1 Communication . 5
3.2 Polydisperse systems . 6
3.3 Implementation . 7

3.3.1 NBin class . 7
3.3.2 NStencil classes . 8
3.3.3 NPair classes . 8

3.4 Additional changes . 9

4 Results 9
4.1 Synthetic benchmark: the bidisperse case . 9

4.1.1 Comparison . 9
4.1.2 Parallel scaling . 11

4.2 Synthetic benchmark: polydisperse cases . 11
4.2.1 Dunkirk sand . 11
4.2.2 Exponential configuration . 13

5 Summary 15

1

1 Introduction

This report concerns the implementation of an improved contact detection mechanism in the
molecular dynamics code LAMMPS [1]. The specific target is granular media simulation (also
referred to as discrete element modelling, DEM), where “contact detection” may generally be
taken to mean the search procedure required to identify pair-wise frictional interactions between
neighbouring particles of finite diameter. Existing methods in LAMMPS [4] allow efficient
contact detection where the particles all have the same size (a mono-disperse system). However,
in cases where two or more particle sizes are present (bidisperse and polydisperse systems,
respectively), the existing methods become increasingly time-consuming as the disparity in the
size of the smallest and largest particle in the system grows.

The solution presented in this work involves the extension of the existing LAMMPS C++ class
structure to allow efficient neighbour detection in cases where a wide disparity in particle sizes
exists. Such systems are of widespread interest in a range of areas including suspensions and
powders, and occur in common industrial materials such as concrete, where typical particle
size ratios can reach at least 100:1. This report contains a short background of the relevant
areas of contact detection, a description of the improved approach, and a number of benchmarks
demonstrating improved performance for various systems.

2 Background

The standard approach used to prevent an O(N2) complexity when searching for neighbouring
pairs in a set of N particles dates to the earliest days of molecular dynamics [2], and is variously
referred to as the cell list or link cell method. This takes a three-dimensional system and
partitions it into cubes of equal size. Each of the particles in the system, with position xi,
can then be assigned to a cell based on that position. Some appropriate integer addressing
mechanism may then be employed to enumerate the particles belonging only to a given cell, or
cells.

Consider a system of like particles having a short-range spherically symmetric interaction cut-
off distance rc. If the width of the cells is chosen to be at least 2rc, then a given particle i
is able to identify all possible pair-wise interactions with neighbours j by examining its own
cell and the 26 immediately adjoining cells in three dimensions. This process is of complexity
O(N). The examination of the aggregate of 27 cells will encounter more pairs than those
strictly required (having rij < rc). A further refinement is then often introduced in which a
subset of neighbouring particles form a neighbour list following Verlet [3]. Such a neighbour
list usually introduces a cut-off criterion modified by a small skin distance s; this provides scope
for particles to move a short distance before the neighbour list has to be reconstructed. In this
case the cells would be chosen to have width at least rn = 2rc + s; in practice, the number of
cells is usually maximised consistent with this condition.

Consider now a granular system with two types of particle having radii rs and rl (for small and
large). This introduces three different interaction cut-off ranges: rssc , rslc , and rllc . In principle,
one should choose the cell width to be rn = 2rllc + s to ensure all large–large interactions are
captured. However, the resulting cell size will necessarily drag into the search very many small–
large and small–small pairs well beyond their respective cut-offs. This is inefficient, and is a
picture that only gets worse as the ratio rl/rs increases.

2

2.1 The LAMMPS multi approach

LAMMPS implements the standard cell list approach as outlined above; in a system having
particles with different interaction cut-offs, the cell width would be chosen on the basis of the
largest interaction cut-off detected. To address the resulting inefficiency, LAMMPS also offers
the “multi” approach [4]. The approach relies on a feature of LAMMPS which allows atoms
to be classified via a type property (an integer), which is usually assigned for each atom by the
user in the initial configuration of atomic positions, velocities, and so on.

Consider again the example of a bidisperse system with two particle sizes rs and rl. The type
property in the initial configuration should then be set to discriminate particles on the basis of
radius. Instead of constructing the cell list on the basis of the largest interaction cut-off rllc , in
the multi approach the cell list is determined on the basis of the smallest present: rssc . Each
particle position xi can be located in the single cell list, which can then be used as the basis
for identifying interactions at the three different cut offs. This is conveniently organised using
different stencils.

2.1.1 Stencils: “Newton off" and "Newton on”

A stencil is simply a set of cells in the cell list used to identify potential pairs i, j for a given
interaction range. An appropriate set of stencils for the bidisperse case is illustrated in Fig-
ure 1A–C. Given a central particle i which is small, potential neighbours j may be identified
via a compact [5] stencil consisting of the central cell and its immediate neighbours (shaded
area in Figure 1A). For larger neighbours, a larger stencil is required to capture the appropriate
interaction cut-off rslc (Figure 1B). If the central particle is a large particle, a larger stencil is
still required to ensure large–large pairs are captured (Figure 1C). In practice, the LAMMPS
multi approach uses exactly one stencil per type: if the central particle is small, the intermediate
stencil is used (1B) and if the central particle is large, the large stencil is used (1C).

The stencils shown in Figure 1A–C are symmetric about the central cell. Such a stencil is
appropriate for what is referred to as the “Newton off” option in LAMMPS. The use of Newton’s
third law in the pair interaction implementation allows a single computation of the interaction
to be performed. The third law Fij = −Fji then allows a force to be assigned to both i and
j with the correct sign. The “Newton off” option means Newton’s third law is not used and
interactions must be computed twice [6]; this means pairs must be stored twice (in neighbour
lists of both i and j).

With the “Newton on” option, the stencil can be reduced: see Figure 1D–F. Cells are searched in
a one-sided fashion, including the central cell, which allows pairs to be identified exactly once.
This provides a saving in the search procedure of around a factor of two.

2.1.2 Parallelism and communication

LAMMPS implements a standard approach of domain decomposition with message passing
via the message passing interface (MPI) in parallel. This means that particles are “owned” by a
given MPI task dependent on their position. In order that all relevant interactions may be located,
a given local domain must obtain information on particles in adjoining regions. Communication
of ghost particles is performed to fulfil this requirement.

3

Figure 1: A two-dimensional schematic representation of stencils in the case of “Newton off”
(A–C) and “Newton on” (D–F) approaches based on a small cell list (gridded lines). (A) A
neighbour of the lower left particle within the relevant interaction cut-off (dashed line) may be
identified by searching a compact stencil (shared area) centred on the particle’s own cell . (B)
Identification of small–large interactions requires an intermediate stencil, and (C) large–large
interactions involve a large stencil. The analogous Newton stencils (D–F) involve only cells “on
one side” (and the central cell). The generalisation to three dimensions is straightforward.

The number of particles communicated at each local domain boundary is related to the inter-
action cut-off distance in a way similar to that used to determine the width of the cells in the
cell list. In the most simple picture, one would identify all particles within a distance rc of
the boundary as ghost particles requiring communication. In the bidisperse case, this distance
would again be the largest relevant cut-off rllc . The multi option introduces a more efficient
variant of this where the ghost cut-off is rslc for small particles, and rllc for large particles. This
is sufficient to allow identification of all potential pairs.

In parallel, the stencils extend beyond the local domain as far as necessary. Particles are assigned
to cells in the usual way dependent on position. In the “Newton off” case, owned particles search
for potential neighbours i, j; this means an interaction spanning a sub-domain boundary will be

4

recorded once by the MPI task owning i and once by the MPI task owning j. The relevant
interaction can then be computed on each MPI task. In the “Newton on” case, the situation
is slightly different: each interaction i, j is identified exactly once on only one MPI task and
computed exactly once. In cases where i and j are owned by different MPI tasks, the resulting
force must be communicated to the MPI task which has not registered the pair. This is referred to
as a reverse communication in LAMMPS. The “Newton on” option therefore incurs a additional
communication overhead compared with “Newton off” again of around a factor of two. There
may, therefore, be some trade off between decreased computation and increased communication
in moving between the different stencils.

3 A type-based approach

The fundamental difference between the new approach and those described above is to instan-
tiate separate cell lists for each type of particle. This follows a hierarchical picture [7]. In the
bidisperse case, this means one cell list with cells of width determined by the properties of the
small particles alone (i.e., rssc), and another having cells of width determined by properties of the
large particles alone (rllc). Small particles (only) are then binned in the small cell list and large
particles (only) in the large cell list. Interactions between like particles may then be identified
via the appropriate cell list using a compact stencil in either case (see Figure 2).

It remains to identify potential pairs i, j of different types. This is approached by locating the
first particle i in the cell list of the other type j and then using an appropriate stencil in the
j-type cell list to perform a search. The exact method is slightly different depending on whether
a “Newton on” or a “Newton off” stencil is required. For “Newton on”, a one-way search is
used which identifies potential small–large pairs by considering only owned small particles, and
using a symmetric stencil in the large cell list to examine large neighbours (see Figure 2B). No
large-to-small search is required. This ensures all small–large pairs are located exactly once on
one MPI task. For “Newton off”, a large-to-small search is required for owned particles. This
requires locating large particles in the small cell list and searching with a stencil appropriate for
the small–large interaction limit rslc (cf. Figure 1B).

3.1 Communication

The time spent in communication is proportional to the number of particles which have to be
transferred between neighbouring processes. In the new approach, a significant efficiency saving
can be made when the “Newton on” option is in operation compared with the multi approach.
Potential small–small pairs may be located on the basis of rssc . In addition, as all potential small–
large pairs are located by examining owned small particles, no small ghost particles beyond rssc
are required. The ghost cut-off distance for large particles is unchanged at rllc , and potential
large–large pairs are identified as before.

The reduction in the ghost cut-off distance for small particles from rslc to rssc represents an
increasingly large volume as R becomes larger. The number of small particles requiring com-
munication can therefore be decreased significantly. Note there is no similar efficiency saving
to be obtained in the case of “Newton off” as potential small–large pairs must be located from
both owned small particles and owned large particles.

5

Figure 2: A schematic showing the relevant
stencils in the two-level picture in the case of the
“Newton on” option. (A) Interactions between
two small particles (shaded circles) within the
relevant cut-off distance (dashed circle) are cap-
tured via a standard Newton stencil (shaded)
in the small cell list (small squares). (B) A
small–large interaction is captured by a “New-
ton off” stencil containing all 8 neighbouring
cells in two dimensions in the large cell list
(large squares; not shown in their entirety). The
search for small–large pairs only takes place
for small particles; there is no large-to-small
search. This ensures each interaction is iden-
tified exactly once on the process which owns
the relevant small particle. (C) Large–large
interactions are captured by a Newton stencil
in the large cell list. The picture for “Newton
off” is different in that a large-to-small search
is required to ensure that potential pairs are
identified on all MPI ranks. This uses an ex-
tended “Newton off” stencil in the small cell list
cf. Figure 1B.

3.2 Polydisperse systems

At this point only bidisperse systems have been considered. However, the generalisation to
a polydisperse system is, in principle, straightforward. For each type, a corresponding cell
list is instantiated. For each pair of types, an appropriate stencil is generated; this may be an
“empty” stencil in the large-to-small direction in the case of “Newton on”, indicating no search
is required. Potential pairs are then identified by examining each of the cell lists in turn.

The key question is: how to assign particles of different sizes to a discrete set of types to
obtain an efficient overall procedure? Previous studies [8] suggest this is strongly dependent
on the particle size distribution for the problem at hand, and no prescriptive approach is readily
available to decide the question without testing. Some findings for polydisperse cases are
presented in Section 4.2.

6

3.3 Implementation

The LAMMPS code [9] is written in C++ (the implementation is sometimes referred to as “C
with classes”) and provides a very wide range of functionality.

There are, broadly, three steps involved in the construction of a neighbour list in LAMMPS:

1. Allocation of a bin structure for each type, and the assignment of every particle to the
appropriate bin based on the particle type and particle position xi;

2. Allocation of the appropriate stencils for each bin structure to allow identification of the
relevant neighbours depending on the two particle types involved;

3. Construction of a neighbour list of pairs for each owned atom from the current owned and
ghost particles together with a search of the bin structures based on the appropriate stencil
or stencils.

These steps are embodied in three LAMMPS base classes, respectively, NBin, NStencil, and
NPair. The existing bin and multi approaches in LAMMPS are implemented by extending the
base classes in the appropriate way, and allowing the user to select the appropriate choice at run
time. (Computation of the final interaction is dependent only on the final neighbour list, and
occurs in a relevant implementation of the Pair class.) Likewise, the new approach is effected
by appropriate extensions of these three base classes so that the whole approach sits naturally
within the existing LAMMPS structure. A number of these classes are now described in turn.
Some further implementations are required to allow particular features of LAMMPS to operate;
a full list is provided in the Appendix.

3.3.1 NBin class

A single class NBinBytype extending NBin is provided to implement the cell lists for each
type. The implementation involves a simple addition to NBin data structures:

int ** atom2bin_type; // Per type bin assignment
int ** binhead_type; // Per type index of first atom each bin
int ** bins_type; // Per type index of next atom in same bin

These provide, respectively, a mechanism to map particles to bins, and a mechanism to provide
a list of particles in a given bin.

In generating a bin structure for each type, an operational bin size is required for each type. By
default, each type uses one half of the current neighbour cut-off distance for that type. This, in
turn, is determined for the relevant pair interaction (for granular pair styles, this usually means
the maximum diameter present for particles of that type) plus the skin distance. Enough bins
are generated to span local sub-domains in parallel, along with the extra extent required to
accommodate ghost atoms. The bins adapt dynamically to any change in system size.

To allow particles to be located in bins of any type, an additional virtual function is added to the
NBin class:

virtual int coord2bin(double * x, int type);

This locates three-dimensional position x in the bin structure for the given type, and returns a
one-dimensional bin index.

7

3.3.2 NStencil classes

Two classes extending NStencil are provided: NStencilHalfBytype3dNewtoff for
the “Newton off” case and NStencilHalf3dBytypeNewton for the “Newton on” case.
Both classes require a T × T matrix of stencils, where T is the number of types. These are
provided by the data structures:

int ** nstencil_type; // No. of points in [itype][jtype] stencil
int *** stencil_type; // Stencil for [itype][jtype] interaction

Stencils for like types (on the diagonal in the matrix) are the same as those seen in Figure 2
(A and C). For particles of any given type, a compact stencil can be used to identify potential
neighbours of the same type. For off-diagonal stencils, required for identifying potential pairs
of differing types, the situation is different for “Newton off” and “Newton on”.

First consider “Newton off”. For a given particle i, potential larger neighbours can be identified
by locating i in the larger stencil, and then using the compact stencil in the larger bin structure
centred on xi. The cell size for the larger bin structure must be large enough to capture small–
large interactions (rslc < rllc). To find potential smaller neighbours, particle i can be located
in the smaller bin structure, and then make use of the small–large stencil (cf. Figure 1B). For
“Newton on”, the pair search is based on a hierarchical approach where owned small particles
find larger neighbours, but not vice-versa. This can be achieved by locating smaller particle i in
a larger bin structure and then using a symmetric stencil (cf “Newton off”). No large-to-small
stencils are required (entries in the stencil matrix are only required on one side of the diagonal).

Determination of number of stencil points is related to the type–type cutoff distance for like
particles (cutneighsq), and cuttypesq for unalike stencils. Stencils are reconstructed
following changes in the corresponding bin structure.

3.3.3 NPair classes

Finally, two classes extending NPair are provided: NPairHalfSizeBytypeNewtoff and
NPairHalfSizeBytypeNewton. These implement the neighbour search and construction
of the neighbour list for each relevant atom. These additional classes generalise the multi
implementations to search through the matrix of stencils. Schematically:

// For each owned atom i of type itype ...
ibin = atom2bin_type[itype][i];
for (int ktype = 1; ktype <= atom->ntypes; ktype++) {
if (itype == ktype) kbin = ibin;
else kbin = coord2bin_type(x[i], ktype);
ns = nstencil_type[itype][ktype];
s = stencil_type[itype][ktype];
for (k = 0; k < ns; k++) {

int js = binhead_type[ktype][kbin + s[k]];
for (j = js; j >=0; j = bins_type[ktype][j]) {

// identify potential pairs i.j ...

The exact details of the pair search depend on a number of details which are similar to those of
other NPair implementations.

8

3.4 Additional changes

Logic is added in the Neighbor class to instantiate the appropriate child classes from their
corresponding factory methods depending on the user input. Logic is also provided in Comm to
set the appropriate ghost cut-off distances in the case that the user selects the reduced commu-
nication option associated with “Newton on”.

4 Results

4.1 Synthetic benchmark: the bidisperse case

In the spirit of Pieter in t’Veld et al. [4], a number of different systems involving different values
of R = rl/rs are now examined to compare the performance of the existing LAMMPS multi
approach with the new bytype approach. In each case, a bidisperse system has been generated
by running two separate LAMMPS simulations of the same system size L3. The first is for
particles rl initialised in random positions to a solid volume fraction of 0.12. The second is for
particles rs initialised at a solid volume fraction of 0.36. Each system is run with a soft repulsive
potential until no solid body overlaps remain. The final positions are then combined, eliminating
any small particles overlapping the position of the large particles. This forms a single bidisperse
system for each R: various parameters are detailed in Table 1 below.

Radius Radius Number Number Box L MPI tasks Rebuilds
large small large small
10.0 1.0 250 711,657 205.9 2x3x4 6
20.0 1.0 111 2,337,678 314.15 2x3x4 8
40.0 1.0 56 9,624,306 500.14 2x3x4 8
80.0 1.0 28 42,900,051 793.92 3x3x4 8

100.0 1.0 25 66,193,461 955.61 6x4x4 7

Each of the bidisperse systems is run with gran/hooke/history/multi for 100 time
steps. The skin distance s = 0.5 in all cases. All cases report the same interaction energies
when run in either multi or bytype modes. Time breakdowns are recorded in each case via
the LAMMPS command

timer full sync

This allows an explicit estimate of load imbalance to be provided.

4.1.1 Comparison

Figure 3 shows the time reported by LAMMPS as a function of the cell list binsz in the range
1.25–10.0 for a number of different values of R = rl/rs. (Note the smallest binsz corresponds
to the default choice in the case that neighbour style multi is used.) A similar pattern of results
is observed in each case. First, as a function of binsz, a minimum is observed typically at 3–4
times the default for the multi approach, and at twice the default in the bytype method. In
the multi case, this may be understood as moving from a regime where there are very many
small cells in the stencils, each of which must be searched. As the cell size is increased, the
number of cells is reduced to a point which is optimal. However, if the cell size is too large,

9

Figure 3: Comparison of pair search methods as a function of the cell list bin size. All the
systems are bidisperse and the panels show different values of R = rl/rs. The markers for each
panel are, top–bottom in all cases, in the same order as the legend. Times are all in seconds
as reported by LAMMPS (“Neigh” in the breakdown). Figures are based on an average of four
repeats (R = 10, 20, 40), or three repeats (R = 80, 100); the exception is for the multi method at
R = 100 where only one indicative run was made. The bars show the maximum and minimum
of the times as reported by LAMMPS, and so provide some measure of imbalance. Note the
different vertical scales in each case.

additional (unnecessary) particles will be brought into the search, increasing the time required.
In the bytype case, the like–like stencils are always compact, so there is no very marked
decrease above 1.25. The minimum is always at twice the default, which is what might be
expected if setting the cell list bin size on the basis of the interaction cut-off.

For a given value of R, Figure 3 shows the different neighbour styles appear in the same order:
multi/newtoff is roughly twice as expensive in the search as multi/newton as the
stencils have approximately twice as many bins. The same is true for bytype, although to a
lesser extent as the ‘cross-type’ stencil is “Newton-off”; here, the time for the newton choice is
typically 70-80% of the time for the newtoff option. For bytype combined with the reduced
communication options, the reduction in the number of small ghost particles is reflected in the
neighbour search time as fewer unnecessary ghost particles are involved (communication time
is considered in the following paragraph). Finally, a growing disparity between the multi and
bytype choices can be seen as the value of R increases. At R = 100, it almost becomes
impractical to run the multi method.

From the same set of runs, Figure 4 shows a comparison of communication and imbalance times
as reported by LAMMPS. (Note that R = 100 is not shown in the same panel as it does not
use the same number of MPI tasks, and is therefore not directly comparable.) Communication
time shows the difference between multi/newton and multi/newtoff: this is related to
the extra cost of reverse communication in newton. The reduced communication option with
bytype/newton shows the reduction in the number of small ghost particles in each case.

10

Figure 4: Communication and imbalance times as a function of particle size ratio R for the bidis-
perse synthetic benchmark. Times are in seconds and are as reported by LAMMPS (“Comm”
and “Sync” in the breakdown). Results are shown for multi/newtoff, multi/newton,
and bytype/newton with reduced communication. Results for communication time are
entirely repeatable with the synchronised timer: statistical errors are less than the size of the
markers.

The imbalance time in Figure 4 becomes increasingly adverse as R becomes larger (here at fixed
sub-domain size). This cost is reduced significantly in the bytype picture. The exact values
seen here are likely to be dependent on the exact distribution of large particles in the system.

4.1.2 Parallel scaling

An overall comparison of the bytype approach in terms of parallel scaling is now presented
in Figure 5. Here, multi is absented as uncompetitive on the strength of the results of the
previous section. These tests are for the same systems as those detailed in Table 1, but times
are recorded without synchronisation (as would be usual in a production run). The times are the
“Loop time” as reported in the LAMMPS standard output. In Figure 5 it can be seen that the
reduced communication option is important to improve scaling. Broadly, the scaling is efficient
to larger numbers of cores for larger problems (as would be expected).

4.2 Synthetic benchmark: polydisperse cases

4.2.1 Dunkirk sand

Many different particle size distributions may be imagined if one moves away from the bidis-
perse situation. This makes exhaustive examination of performance as a function of the distribu-
tion impossible in the most general case. Instead, in this section, one real example is considered
as relevant to a commonly studied granular system, specifically, sand. The size distribution in
question is shown in Figure 6, [11]. The size distribution used is broadly bidisperse, but contains
particles over a wide range of sizes from about 2 microns to 925 microns. There is a sharp peak

11

Figure 5: Parallel scaling in the bidisperse case for R = 10, 20, 40. Each panel shows
bytype/newton with (circles) and without (squares) reduced communication. Each node
of ARCHER has 24 cores and runs 24 MPI tasks. Ideal scaling in each case is denoted by the
black line. Note the vertical scale is a log scale.

Figure 6: The particle size distri-
bution (by number) for Dunkirk sand
[11] as the basis for a synthetic poly-
disperse benchmark.

in the distribution at around 2.5 microns, and a broader peak at around 250–350 microns. The
simulation of a system with such a wide distribution of particle sizes would be a suitable aim
for an efficient hierarchical scheme.

However, here, in order that the results for the polydisperse case are broadly comparable to
those of the bidisperse case appearing in the previous section, some adjustments are appropriate.
The real distribution is scaled so that R = dl/ds can be controlled to match the values in the
bidisperse case. Here dl and ds are now the largest and smallest particle sizes in the scaled
distribution. The units are also adjusted so that the smallest particle has ds ≈ 1.0 in Lennard-
Jones units. For selected system sizes, particles are generated with random diameter from the
appropriate range so that the distribution matches that seen in Figure 6. Particles are placed at
random in a non-overlapping initial configuration. The following parameters were used for size
distributions at R = 10, 20 and 40:

12

Figure 7: For synthetic polydisperse cases, time (seconds) for the relevant number of neighbour
list rebuilds as a function of the separation criteria for two types dsep. Runs have been performed
by multi/newton and bytype/newton, the latter being the faster in all cases. The vertical
scales are set to be comparable to the corresponding plot seen in Figure 3.

Radius Radius Number Box L MPI tasks Rebuilds
large small total
10.0 1.0 712,333 205.9 2x3x4 6
20.0 1.0 2,336,380 506 2x3x4 8
40.0 1.0 9,591,137 1475 2x3x4 8

For each case, exactly two types are used, but the criterion for assigning diameters to a given
type is varied. The default bin sizes are adopted in all cases. Times for the neighbour list rebuild
process are shown in Figure 7. It can be seen that, in each case, the best time is recorded when
dsep is somewhat less than dl/2. This corresponds to a cut-off of a relatively small number of the
largest particles in the size distribution (clearly to the right of the second peak in the distribution
in Figure 6).

Figure 7 also shows that the bytype method is around twice as fast as the multi method
at the optimal dsep. With a little caution, the results may also be compared with those seen in
the bidisperse case for the relevant value of R seen in Figure 3. Such a comparison reveals
that while the bytype method is a little more expensive, the multi method is significantly
more efficient. This suggests that the stencil approach deals with the smoothly varying range of
diameters well; the bidisperse case is something of a worst case where many small stencils are
a poor way to span to separation of scales R in the problem. (The caution is that the systems are
not directly comparable in that they do not have quite the same average numbers of neighbours
in each case.)

4.2.2 Exponential configuration

As a second example we take a polydisperse configuration with a continuous size distribution,
consisting predominantly of small particles (by number), with a maximum size ratio R = 50.
The smallest particle has diameter 1 micron and the underlying particle size distribution is a
simple exponential one; a cummulative size distribution is shown in Figure 8.

While the distribution is of a slightly simpler form than that seen for Dunkirk sand, it is illus-
trative of a case with a higher density, and hence a higher average number of neighbours per
particle. Exactly two types are used, but the separation criterion dsep is again varied. In each
case, the default bin size is used, that is, effectively dsep/2. The results are shown in Figure 9.

13

Figure 8: A cummulative particle size distribution for the simulations presented in Section 4.2.2.
Particle sizes are in microns.

Figure 9: Synthetic polydisperse case with the particle size distribution shown in Figure 8. The
time for six neighbour list rebuilds is shown (seconds) against the separation criterion for exactly
two types. Benchmarks are repeated for multi/newton and bytype/newton methods.
The problem has 5,040,560 particles in system size L = 368.77 and generates 6 neighbour list
rebuilds in each case.

The bytype method outperforms the multi method by about a factor of 3 in the best case.
The new method also appears slightly more forgiving in the exact choice of the criterion used to
assign the two types (there is a broader minimum as a function of dsep).

The two polydisperse cases show the same trend: a significant reduction in the time taken for
the neighbour search if an appropriate separation criterion dsep is selected to assign diameters
to types. This length affects a number of things related to the bin structure. First, the cut ideally
selects a vast majority of the particles in the smaller type. If this is the case, then a good bin size
and compact stencil should lead to good performance. If the cut-off dsep is too small, the bin
size in the smaller type is likely to be too small on the scale of characteristic particle separation
and hence inefficient [10]. At the same time, this will leave a significant number of particles in
the larger type, which must cover a wide range in diameter. This would account for the steep
penalty seen in Figure 9 below dsep = 5. The risk of selecting a dsep appears less abrupt, but
is ultimately as serious. If dsep is too large, the small type covers a wide range and the default
bin size may be too large (compared with the position of the maximum in the distribution) for
efficiency.

Clearly details may depend on the exact form of the particle distribution, and exploratory

14

benchmarks may be required to check acceptable performance.

There is no evidence that any increase in the number of types beyond two improves the neigh-
bour list rebuild time for any of the cases investigated here. It is conjectured that an increased
number of types might only become necessary if the particle distribution is very wide (100:1
and above, say), and flat. This might mandate more types to allow both bin size and stencil
extent to be matched efficiently.

5 Summary

This work has described the implementation of a hierarchical cell list in LAMMPS. This allows
bidisperse and polydisperse systems to be run with significantly improved efficiency when
compared with the available methods. Parallel scaling may be improved by the use of a related
reduced communication option.

Acknowledgements:

This work was funded under the embedded CSE programme of the ARCHER UK National
Supercomputing Service (http://www.archer.ac.uk). We are grateful to Ishan Srivastava for
sharing implementations of various classes not in the public release of LAMMPS at the time
of writing, along with Jeremy Lechman and Steve Plimpton at Sandia for useful discussions.

Appendix

LAMMPS input

The bytype implementation is selected via the LAMMPS neighbor style, e.g.:

neighbor 0.5 bytype

where 0.5 here is the skin distance. By default, the bin size is one half the cut-off distance for
the type. One can specify the bin size for the smallest type (only) explicitly via the binsize
parameter of the neigh_modify command. The bin size for other types is not changed from
the default.

Reduced communciation in the case of bytype/newton may be selected via

comm_modify mode multi cutoff/bytype

The cutoff/bytypemust appear in conjunction with the mode multi option. It is stressed
that the cutoff/bytype option would be erroneous with bytype/newtoff. This is not
checked at run time.

These are the only commands affected by this work.

ARCHER protocol

All reported benchmarks are compiled on ARCHER with Intel programming environment:

15

1) PrgEnv-intel/5.2.82
2) intel/17.0.3.191
3) cray-mpich/7.5.5

Compiler options are:

-g -O3 -restrict -DLMP_INTEL_NO_TBB

All benchmark runs are fully occupied nodes:

aprun -N 24 -n ...

New and updated classes

New classes (files):

nbin_bytype
nstencil_full_bytype_3d
nstencil_half_bytype_2d_newton
nstencil_half_bytype_3d_newtoff
nstencil_half_bytype_3d_newton
npair_full_bytype
npair_half_bytype_newton
npair_half_size_bytype_newtoff
npair_half_size_bytype_newton

Relevant additions have been made to:

nbin
nstencil
neighbour
comm_brick

Notes and References

[1] S.J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp.
Phys. 117, 1–19 (1995)

[2] B.J. Alder and T.E. Wainwright, Studies in Molecular Dynamics. I. General Method, J.
Chem. Phys. 31, 459–466 (1959).

[3] L. Verlet, Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of
Lennard-Jones Molecules, Phys. Rev. 159, 98–103 (1967).

[4] P.J. in t’Veld, S.J. Plimpton, G.S. Grest, Accurate and efficient methods for modelling
colloidal mixtures in a explicit solvent using molecular dynamics, Comp. Phys. Comm.
179 320–329 (2008).

[5] The term “compact” here is used to indicate stencils of extent three or five points in each
dimension. Anything larger is considered “extended”.

16

[6] This is not exactly what LAMMPS does in practice. For “half” NPair implementations,
each pair i, j is stored twice only if i and j are owned by separate MPI tasks. An additional
condition is added in the interaction implementation to test the situation.

[7] V. Ogarko and S Luding, A fast multilevel algorthm for contact detection of arbitrarily
polydisperse objects, Comp. Phys. Comm. 183 931–936 (2012).

[8] D. Krijgsman, V. Ogarko, and S. Luding, Optimal parameters for a hierarchical
grid data structure for contact detection in arbitrarily polydisperse particle systems,
Comp. Part. Mech., 1 357–372 (2014).

[9] https://github.com/lammps/lammps (2018). This work is based on the May 2018 stable
release.

[10] If the average number of particles per bin falls below unity, empty bins are more common:
this is likely to be inefficient. However, for the user wishing to know where to place the
criterion dsep, the average number of particles per bin is not an immediately accessible
quantity to base a decision on.

[11] X. Huang, K.J. Hanley, C. O’Sullivan, C.-Y. Kwok, Exploring the influence of interparticle
friction on critical state behaviour using DEM, Int. J. Numer. Anal. Meth. Geomech. 38(12)
1276–1297 (2014).

17

	Introduction
	Background
	The LAMMPS multi approach
	Stencils: ``Newton off" and "Newton on''
	Parallelism and communication

	A type-based approach
	Communication
	Polydisperse systems
	Implementation
	NBin class
	NStencil classes
	NPair classes

	Additional changes

	Results
	Synthetic benchmark: the bidisperse case
	Comparison
	Parallel scaling

	Synthetic benchmark: polydisperse cases
	Dunkirk sand
	Exponential configuration

	Summary

