
Parallel Software usage on UK National HPC Facilities 2009-2015: How well have
applications kept up with increasingly parallel hardware?

Dr Andrew Turner
EPCC

University of Edinburgh
Edinburgh, UK

a.turner@epcc.ed.ac.uk

Abstract—By common consent, one of the largest
challenges facing the computational science community
on moving from terascale, through petascale towards
exascale HPC facilities is the ability of parallel software
to meet the scaling demands placed on it by modern
HPC architectures. Understanding how well current
applications scale and how their scaling and use pattern
has changed (or not changed) through the recent rise of
multicore processor architectures provides insight into
how well current HPC users may be able to exploit
future systems. In addition, understanding both the
requirements and limitations of users and their
applications is critical to research agencies and other
organisations provisioning shared facilities for their user
communities.

In this paper we analyse the usage of parallel
software across two UK national HPC facilities:
HECToR (initially a Cray XT and latterly Cray XE
system) and ARCHER (a Cray XC30 system). These
systems have spanned the rise of multicore
architectures: the initial HECToR installation was based
on single-socket, dual core AMD Opteron technology
and the current ARCHER installation is based on dual-
socket, 12-core Intel Ivy Bridge technology. Both are
general-purpose systems that support a wide range of
research communities and more than 1500 users. In
particular, we analyse and comment on:

• Trends in application usage over time: which
applications have declined in use and which have
become more important to particular research
communities; and why might this be?

• Trends in the sizes of jobs: which applications
have been able to increase their scaling properties
in line with architecture changes and which have
not? Can we identify why this is the case?

• Changes in research areas on the systems: which
areas have appeared/increased and which have
declined?

The in-house Python tool that is used to collect and
analyse the application usage statistics from the Cray
ALPS scheduler is described. This tool does not depend
on the monitored software being installed in a central
location; rather it uses regular expressions to identify
the executables and so includes data on software
installed locally by users. Using this method we are

typically able to automatically associate more than 70%
of the core hours used on the systems with known
applications. Increasing the coverage is solely dependent
on contacting users for details of the applications that
they use. Each known application also has metadata
associated with it that describes properties such as
programming language, parallel programming models
used, research area, license type, etc. and so we are also
able to analyse usage based on these properties. Amongst
other analyses, this provides insight into changes in
prevalence of parallel programming models in different
research areas.

The analysis reveals shows that there are two broad
classes of scaling limitations on applications: the first is
obviously due to limitations in the applications
themselves and can potentially be overcome with a
suitable investment of development effort; the second is
due to limitations in the scale of the scientific problem
being studied that have an intrinsic limitation in the
parallelism available to the applications.

We conclude with a look forward to future HPC
facilities and comment on how this may impact
particular research areas and applications based on the
preceding analysis.

Keywords: HPC, Applicatons

I. INTRODUCTION
Supercomputer processor technology has undergone a

large amount of change over the past decade – from single-
core architectures, through dual- and quad-core architectures
to current multicore architectures with 10’s of cores per
processor. The UK national supercomputing services
HECToR [1] and ARCHER [2] have spanned the change
from low count multicore processors to the current day
where we have two 12-core processors per compute node.
As both HECToR and ARCHER have been Cray systems
supporting similar research communities this provides an
opportunity to analyse how much effect this change has had
on the applications used by researchers.

If we can understand how applications have (or have
not) been able to cope with changes in requirements due to
changes in processor technology we will have a better
understanding of how future architecture changes (for

example, the availability of many-core processors) will
affect different applications and research communities.

The UK national supercomputing services are provided
by a number of partners:

For ARCHER, the partners are EPSRC [3] and NERC
[4], the service is run by EPCC [5] and STFC Daresbury
Laboratory [6]; Computational Science and Engineering
support is provided by EPCC; and the hardware is provided
by Cray Inc. [7].

For HECToR, the partners were the UK research
councils: EPSRC, NERC and BBSRC [8], the service was
run by EPCC at the University of Edinburgh and STFC
Daresbury Laboratory; Computational Science and
Engineering support was provided by NAG Ltd. [9]; and the
hardware was provided by Cray Inc.

II. SYSTEM ARCHITECTURE DETAILS
Table 1 summarises the different architectures for the

systems considered in this paper. The major impact on
applications has been the increase in core counts (particularly
in moving from HECToR Phase 2a to HECToR Phase 2b)
and the corresponding increase in concurrency on node. This
has also impacted applications as the amount of memory per
core (and memory bandwidth per core) decreased across the
HECToR Phases; although this trend has been reversed
somewhat on ARCHER due to the increased memory per
node and increased memory bandwidth available with the
Intel processor technology. The change in interconnect
technology has had little impact on most applications
although the increase in stability that accompanied the switch
from SeaStar+ (XT) to Gemini (XE) has benefitted all users.

III. OVERALL COMPARISONS
Figure 1 shows the percentage of core hours used on the

systems broken down by research area.
The largest growth areas as time has progressed are

materials science and biomolecular simulation; the latter has
grown from very modest use on HECToR Phase 2a to over
10% of all core hours used on ARCHER. This increase is at
least partially due to the significant development of
applications (e.g. Gromacs) that have been able to exploit
MPP systems such as HECToR and ARCHER for this
research area. Computational Fluid Dynamics (CFD) have

increased their usage going from HECToR to ARCHER and,
as we will see below, this is mostly due to a large increase in
the number of cores that the CFD codes are able to exploit.
Climate/ocean modelling has stayed largely constant across
systems. In the “Others” category the area that has grown the
most from HECToR to ARCHER is Medical Physics (grown
from 0.01% to 0.5%). Although this area is not currently
using large amounts of time we expect to continue to see
growth as the codes used to simulate, for example, blood
flow using Lattice Boltzmann method, have the potential to
scale to very large numbers of cores.

Astrophysics, Cosmology and Particle Physics are not
represented, as they do not form part of the partners that fund
and run the UK national supercomputing services; they have
their own HPC facilities in the UK including an IMB BG/Q
for QCD and various smaller HPC clusters for astronomical
research.

Table 2 shows the top 10 codes used on each of the
systems (ordered by total core hours used).

The highly used codes across the four systems generally
fall into a number of broad classes:

• Periodic Electronic Structure: VASP, CP2K,

CASTEP, CRYSTAL, CASINO. These codes are
generally used for materials science or chemistry
research and usually use 3D parallel FFTs and
dense/sparse linear algebra.

• Classical atomic structure modelling: Gromacs,
NAMD, DL_POLY, LAMMPS. These N-body
simulation codes are generally used for biopolymer
simulation (Gromacs, NAMD) or materials science
(DL_POLY, LAMMPS) and often also require
parallel 3D FFT for electrostatic interactions.

• Climate Simulation and Ocean Modelling: UM
(MET Office Unified Model) WRF, NEMO,
MITgcm, Oasis. These codes generally employ a
structured grid to simulate the ocean or atmosphere
and also include Earth system models that couple
atmosphere and ocean grid-based models.

• Computational Fluid Dynamics: (CFD): Hydra,
INCOMPACT3D, PDNS3D, HiPSTAR. These
codes employ structured and/or unstructured grids.

Table 1: Architecture details for the systems considered in this paper.
System
(Type)

Processor Arch.
(Clock Speed)

Cores per Node
(Sockets)

Memory/Node
(Bandwidth/Core)

Nodes
(Cores)

Interconnect Rpeak
(Tflop/s)

HECToR
Phase 2a

(Cray XT4)

AMD Barcelona
(2.3 GHz)

4
(1)

8 GB
(3.2 GB/s)

5664
(22656)

SeaStar+ 63.4

HECToR
Phase 2b

(Cray XE6)

AMD Magny-
Cours

(2.1 GHz)

24
(2)

32 GB
(3.6 GB/s)

1856
(44544)

Gemini 372.8

HECToR
Phase 3

(Cray XE6)

AMD Interlagos
(2.3 GHz)

32
(2)

32 GB
(2.7 GB/s)

2816
(90112)

Gemini 829.0

ARCHER
(Cray XC30)

Intel Ivy Bridge
(2.6 GHz)

24
(2)

64 GB
(4.9 GB/s)

4920
(118080)

Aries 2550.5

Figure 1: Breakdown of usage by research area.

Table 2: Top ten codes by core hours used for each of

the systems.
HECToR
Phase 2a

HECToR
Phase 2b

HECToR
Phase 3

ARCHER

UM VASP VASP VASP
VASP UM CP2K CP2K

CASTEP CASTEP UM UM
Hydra CP2K CASTEP Oasis
CP2K INCOMPACT3D Gromacs Gromacs

Chroma NEMO DL_POLY CASTEP
NAMD Gromacs PDNS3D HiPSTAR

ChemShell MITgcm MITgcm NEMO
WRF ChemShell NEMO LAMMPS

DL_POLY PDNS3D CRYSTAL CASINO

Codes in the top ten lists above that do not fall into

these categories are: ChemShell (QM/MM computational
chemistry) and Chroma (lattice QCD). These areas do not
show up across all systems in a large way and so are not
further analysed in this paper.

Figure 2 shows the job size distribution for each of the
systems (by core hours used) and reveals that as time has
gone on, the distribution of core hours has used has
generally shifted to larger job sizes although the change
has not been dramatic. It is also clear that not many users
are really managing to use the very largest jobs possible on
the systems for “production” jobs (the codes that do run at
these very large scales are discussed in more detail in the
sections below). In general, this capability is being used
for testing scaling properties and for benchmarking.

This graph reveals that the biggest single change in job
size profile was moving from HECToR Phase 2a to
HECToR Phase 2b and that, since this step, the change has
been modest. This can be understood by looking at the
processor architecture, this corresponds to the change from

4 cores per node (single socket Cray XT nodes) to 24 cores
per node (dual socket Cray XE nodes). This change is a 6×
increase in concurrency per compute node leading to an
enforced requirement on users (and hence applications) to
be able to scale to higher core counts. The distributions
above taken with the top code table suggest that, on the
whole, applications were able to cope with this
requirement for increased parallelism. Applications, CP2K
for example, that were able to exploit this increased
parallelism have been able to grow their share of usage.

Table 3 shows a breakdown of time usage on the
systems by programming languages employed by parallel
applications. The distribution is relatively stable across
system with 60-70% of usage attributed to Fortran
applications and 5-15% attributed to C/C++. The only
significant change has been the increase in C usage from
less than 1% on HECToR Phase 2a to 6% on ARCHER.
This growth is due to the increase in the use of the
Gromacs code (which is written in C).

Figure 2: Overall job size distribution for each system.

Finally, Table 4 shows the breakdown of usage by
parallel programming models across the systems. MPI, of
course, dominates; accounting for at least 70% of the use
on all systems and it is a reasonable assumption to make
that the remaining unidentified usage has a similar
breakdown and this would push the MPI usage number
above 95%. The only model used other than MPI are
codes that interface with the Cray interconnect at a low
level using the DMAPP API. We also monitor the usage
by codes that can use a hybrid message passing plus
shared memory approach and their usage has roughly
doubled from 16% on HECToR Phase 2a to 28% on
ARCHER. This increase has been a key feature in most
codes that are able to scale to very high core counts
(O(10,000)).

We now look at particular application types that have
high usage across all systems in more detail.

IV. APPLICATION TYPES

A. Periodic Electronic Structure
Periodic electronic structure codes generally account

for more than 30% of the time used on all the systems
covered here and so their scaling properties are key in
determining the overall distribution of jobs on the system.
All of the codes in this class are parallelised using message
passing via MPI (CP2K also supports a hybrid MPI +
OpenMP model and CASTEP can also use a hybrid MPI +
System V Shared Memory Segments model. Figure 3
shows how different periodic electronic structure codes
have changed their share of the usage over the systems and
Table 5 the median job sizes for each of the codes on the
systems. CRYSTAL has a much larger median job size
than all other applications in this area possibly reflecting
the different approach it has (using purely localised basis
functions).

Table 3: Breakdown of usage by programming

language.
 HECToR

Phase 2a
HECToR
Phase 2b

HECToR
Phase 3

ARCHER

Fortran 63.3% 65.2% 66.8% 69.3%
C++ 8.9% 2.7% 4.4% 7.4%

C 0.4% 3.6% 5.4% 6.3%
Unidentified 29.1% 30.0% 24.2% 19.4%

Table 4: Breakdown in usage by parallel model.

 HECToR
Phase 2a

HECToR
Phase 2b

HECToR
Phase 3

ARCHER

MPI 56.0% 46.2% 48.0% 54.3%
MPI

+OpenMP
10.7% 15.8% 21.7% 22.8%

MPI
+SharedMem

5.6% 9.0% 5.5% 5.0%

DMAPP 0.2% 0.5% 1.4% 0.6%
Unidentfied 29.1% 30.0% 24.2% 19.4%

Figure 3: Periodic electronic structure code usage
across systems as a function of % core hours used.

Table 5: Median job sizes (in cores) for periodic

electronic structure codes on each of the systems.
 HECToR

Phase 2a
HECToR
Phase 2b

HECToR
Phase 3

ARCHER

VASP 240 456 480 240
CASTEP 252 720 512 360

CP2K 224 1320 608 672
ONETEP 104 504 416 864
Quantum
Espresso

60 72 448 192

CRYSTAL 144 4032 3648 2808

VASP is by far the dominant code on all systems.
CASTEP usage has stayed pretty constant, apart from a
brief increase on HECToR Phase 2b, while CP2K,
ONETEP and CRYSTAL have all increased their share
from the quad-core to the multi-core systems.

The change in used time as a function of job size for
VASP is shown in Figure 4. There was a distinct shift to
larger job sizes in going from quad-core to multi-core
nodes as users were forced to adapt to the new
architecture. The balance of the parallel decomposition in
VASP can be altered at run time and this flexibility allows
the code to adapt somewhat to changing architectures.

If we compare CASTEP and CP2K job sizes
(CASTEP: Figure 5, CP2K: Figure 6) we can see that the
ARCHER CASTEP use tails off by 3072 cores while
CP2K jobs have significant usage up to the 6145-12288
core range. The trend across systems for the two codes
also shows that both codes increased their job sizes on the
move from quad-core to multi-core architecture. It is, of
course, difficult to say if the difference in job sizes
between CASTEP and CP2K are due to inherent scaling
limits in the codes or due to the scaling limits in the
scientific problems that the codes are used to treat. In
addition, as CASTEP has been around longer than CP2K
there may be some user “inertia” that means that the users
continue to run the same job sizes that they have always
run as they have an acceptable time to solution for their
research.

The remaining periodic electronic structure codes have
relatively low usage so we have not explored their data in
detain in this paper but the distribution data is available
online [10].

Figure 4: VASP job size distribution for each system.

Figure 5: CASTEP job size distribution for each
system.

Figure 6: CP2K job size distribution for each system.

B. Classical Atomic Structure Modelling

The usage profile of the N-body classical atomic
structure modelling codes is shown in Figure 7 and the
median job sizes in Table 6. There are really two sub-
classes of code here: Gromacs, NAMD and Amber of
generally used for biomolecular simulation (proteins,
DNA/RNA, lipids, etc.); and DL_POLY, LAMMPS are
used for materials science applications. For the
biomolecular codes, the main story is the growth in the use

of Gromacs from the quad-core to multi-core systems;
NAMD, in contrast, has decreased its share on the
systems. Moving from HECToR to ARCHER it is
noticeable that the use of DL_POLY has dropped while
the use of LAMMPS has grown. All of the codes
discussed here employ hybrid MPI+OpenMP and this area
is the least Fortran-centric area on UK supercomputers
with two of the codes (NAMD, LAMMPS) being C++
based and one (Gromacs) using C.

For these codes, the scalability is strongly influenced
by the scientific problem being treated. This can be
illustrated by looking at the job distribution for DL_POLY
(Figure 8).

Although the intrinsic scalability of the code has not
changed on going from HECToR to ARCHER, the job
size mix is fundamentally different. In particular, a large
amount of time was spent on very large jobs on HECToR
Phase 2b/3. This is a direct consequence of a particular
research problem being investigated using very large
DL_POLY simulations. Since then there has not been that
requirement for such large systems to be studied using
DL_POLY and hence there have not been such large jobs
on the system. This illustrates that the variation in problem
size for these N-body codes in the materials science area is
very large.

In contrast, the biomolecular area have much more
constant, constrained simulation sizes (as proteins and
other biopolymers have a finite size) and this is reflected
in the job size distribution for Gromacs (Figure 9) where,
once it was the dominant code in the space, the jobs sizes
do not vary much.

Figure 7: N-body code usage on each system.

Table 6: Median job sizes (in cores) for N-body codes

on each of the systems.
 HECToR

Phase 2a
HECToR
Phase 2b

HECToR
Phase 3

ARCHER

Gromacs 56 1152 640 432
NAMD 32 72 352 480
Amber 16 72 96 24

DL_POLY 128 4104 32000 72
LAMMPS 96 384 480 456

Figure 8: DL_POLY job distribution for each system.

Figure 9: Gromacs job size distribution for each
system.

Figure 10: Climate/ocean code usage on each system.

Table 7: Median job sizes (in cores) for climate/ocean
modelling codes on each of the systems

 HECToR
Phase 2a

HECToR
Phase 2b

HECToR
Phase 3

ARCHER

UM 256 864 224 1392
WRF 400 400 704 2064

MITgcm 16 504 96 384
NEMO 64 1536 1376 1920
Oasis 32 144 384 5232

There has been a small growth in job sizes on
ARCHER as people start to simulate larger systems (for
example, proteins embedded in membranes) but the job
size is essentially static even though the weak scaling
properties of the code mean that for large systems it can
scale to huge numbers of cores. The peak job size here
reflects the natural size of the scientific problem and not
the code scaling properties. The move to larger HPC
systems does open up the opportunity to use the increased
potential throughput to implement more sophisticated
statistical analyses.

C. Climate Simulation and Ocean Modelling
In this area, where structured grids are the norm, there

is often a drive to higher and higher resolution (finer grids)
and so the potential for useful weak scaling should be
strong. We would expect any limits on the scaling of these
codes to be due to code features and/or design rather than
limits inherent in the scientific problem being studied. The
majority of the codes in this area employ pure MPI as their
parallel method of choice although there are exceptions
such as the ECMWF IFS code that employs Coarray
Fortran.

The reduction in Climate/Ocean Modelling usage
across the HECToR phases seen in Figure 1 above can be
traced mainly to the gradual reduction in usage of the
MET Office Unified Model (UM) as shown in Figure 10
below. The increase in the % of ARCHER used for
Climate/Ocean Modelling compared to HECToR Phase 3
is mainly due to the emergence of the Oasis coupler that is
used to couple the UM atmospheric model to the NEMO
ocean model. The job size distribution for the UM for the
various systems (Figure 11) demonstrates how the drive to
higher resolution in these models allows the jobs to scale
up as the size of the resource increases. The job size
increases tend to lag a bit behind the increase in hardware
for a number of reasons including: code development to
ensure that the solver, load balancing and memory use
work properly as the codes scale up; a requirement to
verify the models on the new hardware; and the increase in
stochastic sampling that also accompanies the increase in
resolution. The same trends are also visible in the data for
the other codes: WRF, MITgcm and NEMO (see the usage
reports online [10]).

The distribution for the Oasis coupler (Figure 12) looks
very different. In this case, the use on HECToR was very
low and seems to have been purely for code porting and,
latterly, benchmarking. On ARCHER the code has been
used at scale for large amounts of time at a single job size
suggesting that it is now being used for “production”
research. The parallel nature of the coupler allows it to
exploit larger numbers of cores as it combines the
parallelism of the UM and NEMO leading to one of the
few high scaling production codes on the ARCHER
service.

Figure 11: UM job size distribution for each system.

Figure 12: Oasis job size distribution for each system.

D. Computational Fluid Dynamics (CFD)
As with the climate and ocean modelling codes, CFD

codes of various sorts tend to employ structured or
unstructured grids. As well as the tendency to increase the
resolution of the grids there is often a drive to simulate
larger systems (i.e. larger grids). This potential weak
scaling provides opportunities for these codes to scale to
high core counts. There is also a push to greater
complexity with more complex geometries that include
dynamic elements (for example rotating turbine blades)
and these increase the difficulties of maintaining
acceptable load balancing and avoiding global
communications as the codes scale to larger and larger
numbers of cores.

This research area employs a wider variety of codes
than any other area on the systems, the major codes and
their use on the various systems are listed in Figure 13 and
the median job sizes for the codes listed in Table 8.

A different code has had the largest usage on each of
the three systems: Hydra on HECToR Phase 2a,
Incompact3D on HECToR Phase2b, PDNS3D on
HECToR Phase 3 and HiPSTAR on ARCHER. The large
increase in “Others” on ARCHER is due to increased
usage of Code_Saturne and Nektar++.

Figure 13: CFD code usage on each system.

Table 8: Median job sizes (in cores) for CFD codes on

each of the systems
 HECToR

Phase 2a
HECToR
Phase 2b

HECToR
Phase 3

ARCHER

HiPSTAR 768 7776 10344
Hydra 256 1056 800 1248

PDNS3D 508 7200 12544 6144
OpenFOAM 512 768 992 288
Incompact3D 2048 6912 3616 2064

Most of the codes in this area are Fortran based and
use MPI parallelism, exceptions include: OpenFOAM and
Nektar++, which are both C++ codes and HiPSTAR,
which is Fortran-based but uses a hybrid MPI+OpenMP
approach.

As can be seen in Figure 14, the job size distribution
for the Hydra code has not changed across different
systems. One reason for this is that as there are so many
different codes in the CFD space a single code tends to be
used by a particular research group for a particular
problem. The uniformity of the Hydra job sizes suggests
that it is being used to study the same research problems
across all the systems.

As we progress from Phase 3 to ARCHER, HiPSTAR
becomes the dominant code in this area, its job size
distribution is shown in Figure 15. The distribution and
usage levels reflect that code development took place on
HECToR Phase 2b/3 before the code went into full
production on ARCHER. This code is able to exploit
larger numbers of cores for the scientific research of
interest than almost any other on ARCHER. This reflects
the fact that for codes in this area the factor limiting the
scaling is often not the scientific problems themselves but
rather the development of the code itself. There has been a
large amount of software development work on this
application to improve the scaling using hybrid MPI
+OpenMP parallelism.

Figure 14: Hydra job size distribution for each system.

Figure 15: HiPSTAR job size distribution for each
system.

V. CONCLUSIONS
Almost all of the codes that have significant usage on UK
national supercomputing facilities coped well with the
change in architecture from quad-core to high core count
multi-core and have been able to increase the core counts
that they can exploit. Most have not been able to increase
the core counts six-fold (in line with the increase in
parallelism on a node) but the majority has managed to
increase their job sizes at least two-fold. The codes that
have been able to increase their scaling in line with
architecture changes are those that have a drive towards
weak scaling from their research problems.

The scaling prospects for codes on the UK national
supercomputing facilities tend to fall into two broad
classes:

1. Those where the scaling is naturally limited by

the scientifically interesting problems that are to
be studied – most of the periodic electronic
structure codes and the classical atomistic
simulation codes fall into this category
particularly when applied to biomolecular
systems.

2. Those where the scaling is limited by the code
development – most of the grid-based problems

(climate/ocean modelling and CFD) fall into this
category. Here the science tends to drive to
problems that have the potential for better scaling
but code development is usually required to
provide the scaling in an efficient way.

Looking to the future, it may seems that scientific

problems (or codes) that fall into the first class have no
real prospects for exploiting even larger parallel resources
in a useful way but this is not generally true. These codes
and research problems will be able to exploit future
architectures to employ more sophisticated sampling
techniques. The trend to increasing computational power
per node should serve them well in this regard and
emerging sampling frameworks that are code agnostic
(e.g. PLUMED, VOTCA) will continue to develop to meet
this need. Codes and problems in the second class will
require continued code development to exploit future HPC
architectures but the potential for scaling driven by
research need is inherent in the research problems they are
used for.

A number of code development initiatives in the UK
have provided support to allow codes to exploit new
architectures. The ARCHER eCSE programme [11] and its
predecessor, the HECToR dCSE programme [12] have
provided focused effort to improve code specifically for
the UK national supercomputing services. Many of the
applications in this paper have benefitted from funding
through this route: particularly CASTEP, CP2K,
DL_POLY and NEMO. The Cray Centre of Excellence at
the University of Edinburgh has helped develop a number
of codes including the UM and HiPSTAR. In addition,
EPSRC has a wider ranging software strategy [13] that
takes a broader approach to improving research software:
improving both the simulation software itself and the
supporting software (libraries, pre- and post-processing
tools). For both the classes of software discussed above
continuing software development effort is key to allowing
them to exploit future HPC technologies.

VI. FUTURE WORK
We will work with the ARCHER user community to

decrease the number of unidentified codes on the system.
We also plan to work with specific communities to
understand if the picture of code usage matches their
expectations, and if not, why not. We will also work with
the UK research councils to understand how this analysis
can help feed into future UK HPC system procurements.
Finally, we would like to generalise the analysis tool so
that it can generate the same information from the range of
HPC services available in the UK and compare application
usage across a range of HPC services.

VII. DATA COLLECTION AND ANALYSIS
The data collection and analysis tool is written in-

house in Python and is available via GitHub [14].
Interrogating ALPS every hour via the apstat command
collects is used to collect usage data.

The analysis tool can then process these usage logs to
produce statistics on code usage. Each application is
defined in a separate file that includes:

• The name of the application
• The regex that is used to identify the

application from the logs (the logs store
executable names)

• The primary programming language (and
version) for the application

• The parallel programming model employed in
the application

• The application type (e.g. structured grid)
• The primary research area for the application

(e.g. materials science)
• The license type for the application

Any executable names that are encountered in the logs

that do not match any of the known applications are stored
and usage accumulated against them. The report then lists
any of these unknown executables that have a large
amount of time attributed to them so that they can be
investigated and, hopefully, added to the list of described
applications.

Additional options to the analysis tool include allowing
the reporting to be limited to a specific period, to a
particular project or group of users, specifying a custom
set of histogram bins, and producing the reports in CSV
format for import into other software. By default, the tool
also produces plots in PNG format for quick visual
inspection of the data.

The text reports submitted along with this paper
provide examples of the output produced by the reporting
tool.

ACKNOWLEDGMENT
Thanks to the EPCC User Support and Liaison team

and the Cray CoE staff in Edinburgh for interesting
discussions and comments on this paper.

REFERENCES
[1] http://www.hector.ac.uk, accessed 4 April 2015
[2] http://www.archer.ac.uk, accessed 4 April 2015
[3] http://www.epsrc.ac.uk, accessed 4 April 2015
[4] http://www.nerc.ac.uk, accessed 4 April 2015
[5] http://www.epcc.ed.ac.uk, accessed 4 April 2015
[6] http://www.stfc.ac.uk/1903.aspx, accessed 4 April 2015
[7] http://www.cray.com, accessed 4 April 2015
[8] http://www.bbsrc.ac.uk, accessed 4 April 2015
[9] http://www.nag.com, accessed 4 April 2015
[10] http://www.archer.ac.uk/documentation/white-papers/, accessed 23

April 2015
[11] http://www.archer.ac.uk/community/eCSE/, accessed 4 April 2015
[12] http://www.hector.ac.uk/cse/distributedcse/, accessed 4 April 2015
[13] http://www.epsrc.ac.uk/research/ourportfolio/themes/researchinfra

structure/subthemes/einfrastructure/software/, accessed 4 April
2015

[14] https://github.com/aturner-epcc/archer-monitor, accessed 4 April
2015

