
Single Sided MPI



Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the 

material under the following terms: You must give appropriate credit, provide a link to the 

license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission 

before reusing these images.



Why RMA

• One-sided communication functions are an interface to 

MPI RMA 

• Is a natural fit for some codes 

• Can provide a performance/scalability increase for your 

codes 

• Programmability reasons 

• Hardware (interconnect) reasons 

• But is not a silver bullet! 



Terminology

• Origin is the process initiating the request (performs the 

call) 

• Irrespective of whether data is being retrieved or written 

• Target is the process whose memory is accessed 

• By the origin, either remotely reading or writing to this 

• All remote access performed on windows of memory 

• All access calls are non-blocking and issued inside an 

epoch 

• The epoch is what forces synchronisation of these calls 



RMA program flow

• Collectively initialise a window

a) Start a RMA epoch (synchronisation)

b) Issue communication calls

c) Stop a RMA epoch (synchronisation)

• Collectively free the window



Window creation
• A collective call, issued by all processes in the communicator 

int MPI_Win_create(void *base, MPI_Aint size, int

disp_unit, MPI_Info info, MPI_Comm comm, MPI_Win *win)

• Each process may specify completely different locations, sizes, 
displacement units and info arguments. 

• You can specify no memory with a zero size and NULL base 

• The same region of memory may appear in multiple windows that have 
been defined for a process. But concurrent communications to 
overlapping windows are disallowed. 

• Performance may be improved by ensuring that the windows align with 
boundaries such as word or cache-line boundaries. 



Window management
• Retrieving window attributes 

int MPI_Win_get_attr(MPI_Win win, int

win_keyval, void *attribute_val, int *flag) 

• win_keyval is one of MPI_WIN_BASE, MPI_WIN_SIZE, 
MPI_WIN_DISP_UNIT, MPI_WIN_CREATE_FLAVOR, MPI_WIN_MODEL 

• Attribute_val if the attribute is available and in this case (flag is true), 

otherwise flag will be false 

• Freeing a window 

int MPI_Win_free(MPI_Win *win) 

• All RMA calls must have been completed (i.e. the epoch stopped) 



Fences

• Synchronisation calls are required to start and stop an epoch 

• Fences are the simplest way of doing this where global 
communication phases alternate with global communication 

• Most closely follows a barrier synchronisation 

• A (collective) fence is called at the start and stop of an epoch 

int MPI_Win_fence(int assert, MPI_Win win)

MPI_Win_fence(0, window); 

Communication calls go here 

MPI_win_fence(0, window); 

RMA can not be 
started until this first 
fence 

All issued 
communication 
calls block here 



Fence attributes

• Attributes allow you to tell the MPI library more information for performance 

(but MPI implementations are allowed to ignore it!) 
• MPI_MODE_NOSTORE local window is not updated by local writes of any form since last 

synchronisation. Can be different on processes 

• MPI_MODE_NOPUT local window will not be updated by put/accumulate RMA operations until 
AFTER the next synchronisation call. Can be different on processes 

• MPI_MODE_NOPRECEDE fence does not complete any sequence of locally issues RMA calls. 
Attribute must be given by all processes 

• MPI_MODE_NOSUCCEED fence does not start any sequence of locally issued RMA calls. 
Attribute must be given by all processes 

• Attributes can be or’d together, i.e. 

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NO_SUCCEED), window) 



RMA Communication calls
• Three general calls, all non-blocking: 

• Get data from target’s memory 
int MPI_Get(void *origin_addr, int origin_count, 

MPI_Datatype origin_datatype, int target_rank, 

MPI_Aint target_disp, int target_count, 

MPI_Datatype target_datatype, MPI_Win win) 

• Put data into target’s memory 
int MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, 

MPI_Aint target_disp, int target_count, 

MPI_Datatype target_datatype, MPI_Win win) 

• Accumulate data in target’s memory with some other data 
int MPI_Accumulate(void *origin_addr, int origin_count, 

MPI_Datatype origin_datatype, int target_rank, 

MPI_Aint target_disp, int target_count, 

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win) 



RMA communications

• Similarly to non-blocking P2P one must wait for synchronisation (i.e. 
end of epoch) until accessing retrieved data (get) or overwriting 
written data (put/accumulate) 

• target_disp is in bytes (multipled by window displacement unit), 
origin_count and target_count are in elements of data type 

• Undefined operations: 
• Local stores/reads with a remote PUT in an epoch 

• Several origin processes performing concurrent PUT to the same target 
location 

• Single origin process performing multiple PUTs to the same target location in a 
single epoch 

• Accumulate supports the MPI_Reduce operations, but NOT user 
defined operations. Also supports MPI_REPLACE which is effectively 
the same as a put. 



Example
MPI_Win win; 

if (rank == 0) { 

MPI_Win_create(buf, sizeof(int)*20, 1, 

MPI_INFO_NULL, comm, &win); 

} else {

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, comm, 

&win); 

} 

MPI_Win_fence(MPI_MODE_NOPRECEDE,win); 

if (rank != 0) { 

MPI_Get(mybuf, 20 , MPI_INT, 0, 0, 20, MPI_INT, 

win); 

} 

MPI_Win_fence(MPI_MODE_NOSUCCEED, win); 

MPI_Win_free(&win) 

Based on an example at cvw.cac.cornell.edu/MPIoneSided/fence 

Rank 0 creates a window of 20 integers, 

displacement unit = 1 

Other ranks create a window but attach no local 

memory 

Fence, no preceding RMA calls 

Non-zero ranks get the 20 integers from rank 0

Fence, complete all communications and no 

RMA calls in next epoch 



Synchronisation modes

• Active target 

• Both processes are explicitly involved in the data movement. Only 
one process issues the data transfer call but all processes issue 
the synchronisation. 

• Passive target 

• Only the origin process is involved in the data movement, there are 
no calls made on the target process. For instance two origin 
processes might communicate by accessing the same location in a 
target window, and the target process (which does not participate) 
might be distinct from the origin processes. 

• Fence is an example of active target as each process 

issues the fence calls 



Epoch types

• Access epoch 

• RMA communication calls (get, put etc) can only be issued inside an 
access epoch. This is started with an RMA synchronisation call on the 
origin and completes with the next synchronisation call. 

• i.e. it is used to access the remote memory of another process. 

• Exposure epoch 

• Used in active target communication, this is required to expose 
memory on the target so it can be accessed by other processes’ RMA 
operations. 

• Fences abstract the programmer from this as they will 

complete/start both access and exposure epochs 

automatically as required 



RMA Memory model

• Public and private window copies 

• Public memory region is addressable by other processes (i.e. 
exposed main memory) 

• Private memory (i.e. transparent caches or communication buffers) 
which is only locally visible but elements from public memory might 
be stored. 

• Coherent if updates to main memory are automatically 

reflected in private copy consistently 

• Non-coherent if updates need to be explicitly 

synchronised 



RMA Memory model
• MPI therefore has two models 

• Unified if public and private copies are identical – used if possible, 
realistic on cache coherent machines. (This was added in MPI v3) 

• Separate if they are not, here there is only one copy of a variable in 
process memory but also a distinct public copy for each window 
that contains it. The old model 

Public window copy

Public window copy

Process memory

• In the separate model a suitable 
synchronisation call (i.e. end of an epoch) 
must be issued to make these consistent. In 
the unified model some synchronisation 
calls might be omitted for performance 
reasons 

• The window attribute tells you which model 
it follows 

Put Get

Local 

write

Local 

read



Request handles

• There is also an R variant of all communication calls 

which associate a request handle with the operation 
• i.e. Rget, Rput and Raccumulate

• Only valid in passive target synchronisation 

• This request handle is then used as you would any other 
request handle (you can call MPI_test, MPI_wait etc 

on it.) 

• For a put/accumulate guarantees that the origin’s 

buffer can be overwritten (but not that data has arrives) 

• For a get guarantees that data is available in the origin’s 

buffer 



Dynamic windows

• Traditional windows allocation required that memory is 
attached at window creation 
• But what if we don’t know the amount of memory needed at that 

point? 

• Dynamic windows allow memory can be exposed without 
additional synchronisation 

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, 

MPI_Win *win) 

• Memory is then attached with 
int MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size) 

• Detached with 
int MPI_Win_detach(MPI_Win win, const void *base) 



Dynamic windows

• Memory being attached can not overlap with any other 

memory that is already attached 

• The target displacement argument of the origin’s 

communication call is the address at the target 

• You can use MPI_Get_Address on the target to retrieve 

this 

• Must ensure that the memory has been attached on the 

target process before the origin issues any RMA calls 

referencing it 



Practical

• Decomposed in X 
dimension only. 

• All halo swapping 
communications are 
currently non-blocking 
P2P 

• Replace these with 
RMA 

• C and Fortran versions 
provided 

X

Y

MPI API online reference http://www.mpich.org/static/docs/v3.2/www3/


