
Performance metrics
How is my parallel code performing and scaling?

Performance metrics

• A typical program has two categories of components
- Inherently sequential sections: can’t be run in parallel

- Potentially parallel sections

• Speed up
- typically

• Parallel efficiency
- typically

• Serial efficiency
- typically

where N is the size of the problem and P the number of processors

2

S N,P() =
T N,1()
T N,P()

E N,P() =
S N,P()
P

=
T N,1()
P T N,P()

E N() =
Tbest N()
T N,1()

S N,P() < P

E N,P() <1

E N() <=1

Scaling

• Scaling is how the performance of a parallel application

changes as the number of processors is increased

• There are two different types of scaling:

- Strong Scaling – total problem size stays the same as the number

of processors increases

- Weak Scaling – the problem size increases at the same rate as the

number of processors, keeping the amount of work per processor

the same

• Strong scaling is generally more useful and more difficult

to achieve than weak scaling

3

Strong scaling

4

0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
p

e
e

d
-u

p

No of processors

Speed-up vs No of processors

linear

actual

Weak scaling

5

0

2

4

6

8

10

12

14

16

18

20

1 n

Actual

Ideal

R
u
n
ti
m

e
 (

s
)

No. of processors

The serial section of code

“The performance improvement to be gained by parallelisation is limited

by the proportion of the code which is serial”

Gene Amdahl, 1967

6

Amdahl’s law

• A fraction, , is completely serial

• Parallel runtime

- Assuming parallel part is 100% efficient

• Parallel speedup

• We are fundamentally limited by the serial fraction

- For , S = P as expected (i.e. efficiency = 100%)

- Otherwise, speedup limited by for any P

• For ; 1/0.1 = 10 therefore 10 times maximum speed up

• For ; S(N, 16) = 6.4, S(N, 1024) = 9.9

7

T N,P() =a T N,1() +
1-a() T N,1()

P

S N,P() =
T N,1()
T N,P()

=
P

aP+ 1-a()

a

a = 0

a = 0.1
a = 0.1

1/a

Gustafson’s Law

• We need larger problems for larger numbers of CPUs

• Whilst we are still limited by the serial fraction, it becomes
less important

8

Utilising Large Parallel Machines

• Assume parallel part is O(N), serial part is O(1)

- time

- speedup

• Scale problem size with CPUs, i.e. set (weak scaling)

- speedup

- efficiency

9

E P,P() =
a

P
+ 1-a()

S P,P() =a + 1-a() P

S N,P() =
T N,1()
T N,P()

=
a + 1-a() N

a + 1-a()
N

P

T N,P() =Tserial N,P() +Tparallel N,P()

=a T 1,1() +
1-a() T 1,1()

P

N = P

Gustafson’s Law

• If you can increase the amount of work done by each

process/task then the serial component will not dominate

- Increase the problem size to maintain scaling

- This can be in terms of adding extra complexity or increasing the

overall problem size.

- Due to the scaling of N, effectively the serial fraction becomes

• For instance,

10

S N *P,P() = P-a P-1()

a = 0.1

S 16 N,16() =14.5

S 1024 N,1024() = 921.7

a

P

Analogy: Flying London to New York

11

Buckingham Palace to Empire State

• By Jumbo Jet
- distance: 5600 km; speed: 700 kph

- time: 8 hours ?

• No!
- 1 hour by tube to Heathrow + 1 hour for check in etc.

- 1 hour immigration + 1 hour taxi downtown

- fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

• Triple the flight speed with Concorde to 2100 kph
- total journey time = 4 hours + 2 hours 40 mins = 6.7 hours

- speedup of 1.8 not 3.0

• Amdahl’s law!
- a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours)

12

Flying London to Sydney

13

Buckingham Palace to Sydney Opera

• By Jumbo Jet
- distance: 16800 km; speed: 700 kph; flight time; 24 hours

- serial overhead stays the same: total time: 4 + 24 = 28 hours

• Triple the flight speed
- total time = 4 hours + 8 hours = 12 hours

- speedup = 2.3 (as opposed to 1.8 for New York)

• Gustafson’s law!
- bigger problems scale better

- increase both distance (i.e. N) and max speed (i.e. P) by three

- maintain same balance: 4 “serial” + 8 “parallel”

 14

Plotting

• Think carefully whenever you plot data

- what am I trying to show with the graph?

- is it easy to interpret?

- can it be interpreted quantitatively?

• Default plotting options are rarely what you want

- default colours can be hard to read (e.g. yellow on white)

- default axis limits may not be sensible

- ...

• Test data

- MPI version of traffic model on multiple nodes of ARCHER

15

Hard to interpret small N data here

16

0

100

200

300

400

500

600

700

0 50 100 150 200 250

T
im

e
 (

s
e
c
o

n
d

s
)

Processes

Large N

Small N

log/log can make trends in data too similar

17

1

10

100

1000

16 32 64 128 256 512

T
im

e
 (

s
e
c
o

n
d

s
)

Processes

Large N

Small N

Normalised data easier to compare

18

0

1

2

3

4

5

6

0 50 100 150 200 250

S
p

e
e
d

u
p

Processes

Large N

Small N

• use single-node (24-core) performance as baseline here

Efficiency plots can be useful too

19

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

P
a
ra

ll
e
l

E
ff

ic
ie

n
c
y

Processes

Large N

Small N

log/linear useful if many points at small P

20

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 128 256

P
a
ra

ll
e
l

E
ff

ic
ie

n
c

y

Processes

Large N

Small N

Don’t just accept the default options

• In this bar chart the x-axis doesn’t have a meaningful

scale

21

0

1

2

3

4

5

6

1 2 3 4 8

S
p

e
e
d

u
p

Nodes

Summary

• A variety of considerations when parallelising code

- serial sections

- communications overheads

- load balance

- ...

• Scaling is important

- the better a code scales the larger machine it can take advantage of

• Metrics exist to give you an indication of how well your code

performs and scales

- important to plot them appropriately

22

