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Before MPI 

• Before MPI there were many competing message passing 
libraries. 
- Most computer vendors developed their own proprietary libraries. 

- There were also various portable libraries: 

• These targeted a variety of systems/interconnects. 

• Mostly developed by academic groups. 

• Usually only optimised for a small subset of the supported platforms.  

• Different libraries used different models of communication 

• This made application development very hard  

- Applications often needed their own communication module to 
encapsulate the different message passing systems. 

• MPI was an attempt to define a standard set of communication 

calls. 
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MPI Forum 

• Main web site at http://mpi-forum.org/meetings/ 

• The MPI Forum contains representatives from many of the 
vendors and academic library developers. 

• This is one reason the specification is so large: 

- MPI supports many different models of communication, corresponding to 
the various communication models supported by its predecessors. 

• Much of the specification was driven by the library developers. 

- The API leaves a lot of scope for optimised versions on different 
hardware. 

- Many aspects of the MPI specification deliberately allow different 
implementations the freedom to work in different ways. 

• This makes it easy to port/optimise MPI for new hardware. 

• Application developers need to be aware of this when writing code. 

• Erroneous applications may work fine on one MPI implementation but fail using 
a different one. 
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History of MPI 

• MPI is an “Application Programming Interface” (API) specification. 

- Its a specification not a piece of code. 

- There are many different implementations of the MPI specification. 

• The MPI Standard is defined by the MPI Forum 

- Work started 1992 

- Version 1.0 in 1994 – basic point-to-point, collectives, data-types, etc 

- Version 1.1 in 1995 – fixes and clarifications to MPI 1.0 

- Version 1.2 in 1996 – fixes and clarifications to MPI 1.1 

- Version 1.3 in 1997 – refers to MPI 1.2 after combination with MPI-2.0 

- Version 2.0 in 1997 – parallel I/O, RMA, dynamic processes, C++, etc 

- --- Stable for 10 years --- 

- Version 2.1 in 2008 – fixes and clarifications to MPI 2.0 

- Version 2.2 in 2009 – small updates and additions to MPI 2.1 

- Version 3.0 in 2012 – neighbour collectives, unified RMA model, etc 

- Version 3.1 in 2015 – fixes, clarifications and additions to MPI 3.0 
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MPI-2 One-sided communication 
• Separates data transmission from process synchronisation 

• All communication parameters specified by a single process 

• Definitions: “origin” calls MPI, memory accessed at “target” 

 

• Initialise by creating a “window” 

- A chunk of local memory that will be accessed by remote processes 

 

• Open origin “access epoch” (and target “exposure epoch”) 

• Communicate: MPI_Put, MPI_Get, MPI_Accumulate 

• Synchronise: passive target (or active target) 

• Use data that has been communicated 

 

• Tidy up by destroying the window – MPI_Win_free 

6 



MPI 3.0 
• Major new features 

- Non-blocking collectives 

- Neighbourhood collectives 

- Improvements to one-sided communication 

- Added a new tools interface 

- Added new language bindings for FORTRAN 2008 

• Other new features 

- Matching Probe and Recv for thread-safe probe and receive 

- Non-collective communicator creation function 

- Non-blocking communication duplication function 

- “const” correct C language bindings 

- New MPI_Comm_split_type function 

- New MPI_Type_create_hindexed_block function 

• C++ language bindings removed 

• Previously deprecated functions removed 

 7 



MPI 3.0 – Changes to collectives 
• Non-blocking versions of all collective communication functions added 

- MPI_Ibcast, MPI_Ireduce, MPI_Iallreduce, etc 

- There is even a non-blocking barrier, MPI_Ibarrier 

- They return MPI_Request like other non-blocking functions 

- The user code must complete the operation with (one of the variants of) MPI_Test or 

MPI_Wait 

- Multiple non-blocking collectives can be outstanding but they must be called in the same 

order by all MPI processes 

• New neighbourhood collective functions added 

- MPI_Neighbor_allgather and MPI_Neighbor_alltoall (plus variants) 

- Neighbours defined using a virtual topology, i.e. cartesian or graph 

- Extremely useful for nearest-neighbour stencil-based computations 

- Allow a scalable representation for common usage of MPI_Alltoallv 
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MPI 3.0 – Changes to One-sided 
• New window creation functions 

- New options for where, when and how window memory is allocated 

• New atomic read-modify-write operations 

- MPI_Fetch_and_op and MPI_Compare_and_swap 

• New “unified” memory model 

- Old one still supported, now called “separate” memory model 

- Simplifies memory consistency rules on cache-coherent machines 

• New local completion semantics for one-sided operations 

- MPI_Rput, MPI_Rget and MPI_Raccumulate return MPI_Request 

- User can use MPI_Test or MPI_Wait to check for local completion 
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MPI Next: End-points and Fault-tolerance 

• End-points proposal – improved support for hybrid programs 

- Allow threads to act like MPI processes 

- Allow multiple MPI ranks for a communicator in a single OS process 

- Example use-case: easier to map UPC thread id to MPI rank 

• Fault-tolerance proposal – improved error-handling 

- Allow an MPI program to survive various types of failure 

- Node failure, communication link failure, etc 

- Notification: local process told particular operation will not succeed 

- Propagation: local knowledge of faults disseminated to global state 

- Consensus: vote for and agree on a common value despite failures 

- Low-level minimum functionality to support fault-tolerance libraries 
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MPI implementations 

• There are many different implementations of the MPI 
specification. 

• Many of the early ones were based on pre-existing portable 

libraries. 

• Currently there are 2 main open source MPI implementations 

- MPICH 

- OpenMPI 

• Many vendor MPI implementations are now based on these 

open source versions. 
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MPI family tree (partial) 

12 

MPI 
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MPICH 

• Virtually the default MPI implementation 
- Mature implementation. 

- Good support for generic clusters (TCP/IP & shared memory). 

- Many vendor MPIs now based on MPICH. 

• Original called MPICH (MPI-1 functionality only) 

• Re-written from scratch to produce MPICH-2 (MPI-2) 

• Incorporated MPI-3 and renamed back to MPICH again 

• Ported to new hardware by implementing a small core ADI 

- ADI = Abstract Device Interface. 

- Full API has default implementation using the core ADI functions. 

- Any part can be overridden to allow for optimisation.  
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OpenMPI 

• New MPI implementation 
- Joint project between developers of  

• FT-MPI 

• LA-MPI 

• LAM/MPI 

• PACX/MPI 

• Very active project 

- In its early days:- 

• Special emphasis on support for infiniband hardware 

• Special emphasis on Grid MPI 
- Fault tolerant communication 

- Heterogeneous communication 

• Sun switched to OpenMPI with clustertools-7 

- Current version supports MPI-3 

- Open Source project with large and varied community effort 
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Summary 
• Most MPI implementations use a common “superstructure” 

- lots of lines of code 

- deals with whole range of MPI issues: datatypes, communicators, argument 

checking, … 

- will implement a number of different ways (protocols) of sending data 

- all hardware-specific code kept separate from the rest of the code, e.g. hidden 

behind an Abstract Device Interface 

• To optimise for a particular architecture 

- rewrite low-level communication functions in the ADI 

- optimise the collectives especially for offload hardware 

- use machine-specific capabilities when advantageous 

• Multi-core nodes 

- modern MPI libraries are aware of shared-memory nodes 

- already include optimisations to speed up node-local operations 

- uses multiple implementations of the same ADI in a single library 
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