
MPI 3.0 Neighbourhood

Collectives
Advanced Parallel Programming

Overview
• Review of topologies in MPI

• MPI 3.0 includes new neighbourhood collective operations:

- MPI_Neighbor_allgather[v]

- MPI_Neighbor_alltoall[v|w]

• Example usage:

- Halo-exchange can be done with a single MPI communication call

• Practical tomorrow:

- Replace all point-to-point halo-exchange communication with a single

neighbourhood collective in your MPP coursework code

2

Topology communicators (review 1)
• Regular n-dimensional grid or torus topology

- MPI_CART_CREATE

• General graph topology

- MPI_GRAPH_CREATE

• All processes specify all edges in the graph (not scalable)

• General graph topology (distributed version)

- MPI_DIST_GRAPH_CREATE_ADJACENT

• All processes specify their incoming and outgoing neighbours

- MPI_DIST_GRAPH_CREATE

• Any process can specify any edge in the graph (too general?)

3

Topology communicators (review 2)
• Testing the topology type associated with a communicator

- MPI_TOPO_TEST

• Finding the neighbours for a process

- MPI_CART_SHIFT

- Find out how many neighbours there are:

• MPI_GRAPH_NEIGHBORS_COUNT

- Get the ranks of all neighbours:

• MPI_GRAPH_NEIGHBORS

- Find out how many neighbours there are:

• MPI_DIST_GRAPH_NEIGHBORS_COUNT

- Get the ranks of all neighbours:

• MPI_DIST_GRAPH_NEIGHBORS

4

• See section 7.6 in MPI 3.0 for blocking functions

- See section 7.7 in MPI 3.0 for non-blocking functions

- See section 7.8 in MPI 3.0 for an example application

• But beware of the mistake(s) in the example code!

• MPI_[N|In]eighbor_allgather[v]

- Send one piece of data to all neighbours

- Gather one piece of data from each neighbour

• MPI_[N|In]eighbor_alltoall[v|w]

- Send different data to each neighbour

- Receive different data from each neighbour

• Use-case: regular or irregular domain decomposition codes

- Where the decomposition is static or changes infrequently

- Because creating a topology communicator takes time

5

Neighbourhood collective operations

MPI_Neighbor_allgather

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf
sendtype

sendcount

recvbuf

recvtype

recvcount

• Same send buffer
for each outgoing
neighbour

• Contiguous chunks in
receive buffer from each
incoming neighbour

6

MPI_Neighbor_allgatherv

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf
sendtype

sendcount

recvbuf

recvtype

displs[5]

recvcounts[5]

• Same send buffer
for each outgoing
neighbour

• Non-contiguous
variable-sized chunks in
receive buffer from each
incoming neighbour

7

MPI_Neighbor_alltoall

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf sendtype

sendcount

recvbuf

recvtype

recvcount

• Contiguous chunks in
send buffer
for each outgoing
neighbour

• Contiguous chunks in
receive buffer from each
incoming neighbour

8

MPI_Neighbor_alltoallv

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf

sendtype

sdispls[3]

sendcounts[3]

recvbuf

recvtype

rdispls[5]

recvcounts[5]

• Non-contiguous variable-
sized chunks in send
buffer
for each outgoing
neighbour

• Non-contiguous variable-
sized chunks in receive
buffer from each
incoming neighbour

9

MPI_Neighbor_alltoallw

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf
sendtypes[3]

sdispls[3] (in bytes)

sendcounts[3]

recvbuf

recvtypes[5]

rdispls[5]

recvcounts[5]

• Non-contiguous variable-
sized chunks in send
buffer
for each outgoing
neighbour

• Non-contiguous variable-
sized chunks in receive
buffer from each
incoming neighbour

10

for (int i=0;i<4;++i) {
 sendcounts[i] = 1;
 recvcounts[i]=1; }

sendtypes[0] = contigType;

senddispls[0] = colLen*(rowLen+2)+1;

sendtypes[1] = contigType;

senddispls[1] = 1*(rowLen+2)+1;

sendtypes[2] = vectorType;

senddispls[2] = 1*(rowLen+2)+1;

sendtypes[3] = vectorType;

senddispls[3] = 2*(rowLen+2)-2;

// similarly for recvtypes and recvdispls

MPI_Neighbor_alltoallw

V
E
C
T
O
R

V
E
C
T
O
R

CONTIGUOUS

CONTIGUOUS

CONTIGUOUS

CONTIGUOUS

sendbuf

MPI_Neighbor_alltoallw(sendbuf, sendcounts, senddispls, sendtypes,
 recvbuf, recvcounts, recvdsipls, recvtypes,
 comm);

V
E
C
T
O
R

V
E
C
T
O
R

recvbuf

rowLen

colLen

11

Why bytes for Alltoallw displs?

• Normally, displacements are in number of objects

- MPI hates talking about bytes!

• Byte offset = displ * extent(object)

- but what is the extent of a datatype with holes?

- and is it useful?

12

Array Subsections in Memory

13

C: x[5][4]

F: x(5,4)

Equivalent Vector Datatypes

14

stride = 4

blocklength = 2
count = 3

stride = 5

blocklength = 3
count = 2

Definition in MPI
MPI_Type_vector(int count, int blocklength, int stride,

 MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE,

 OLDTYPE, NEWTYPE, IERR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE

INTEGER NEWTYPE, IERR

MPI_Datatype vector3x2;

MPI_Type_vector(3, 2, 4, MPI_FLOAT, &vector3x2)

MPI_Type_commit(&vector3x2)

integer vector3x2

call MPI_TYPE_VECTOR(2, 3, 5, MPI_REAL, vector3x2, ierr)

call MPI_TYPE_COMMIT(vector3x2, ierr)

15

Datatypes as Floating Templates

16

Choosing the Subarray Location

17

MPI_Send(&x[1][1], 1, vector3x2, ...);

MPI_SEND(x(2,2) , 1, vector3x2, ...)

MPI_Send(&x[2][1], 1, vector3x2, ...);

MPI_SEND(x(3,2) , 1, vector3x2, ...)

MPI_Send(&x[0][0], 1, vector3x2, ...);

MPI_SEND(x(1,1) , 1, vector3x2, ...)

Datatype Extents
• When sending multiple datatypes

- datatypes are read from memory separated by their extent

- for basic datatypes, extent is the size of the object

- for vector datatypes, extent is distance from first to last data

18

extent = 10*extent(basic type)

extent = 8*extent(basic type)

• Extent does not include trailing spaces

Sending Multiple Vectors

19

MPI_Send(&x[0][0], 1, vector3x2, ...);

MPI_SEND(x(1,1) , 1, vector3x2, ...)

MPI_Send(&x[0][0], 2, vector3x2, ...);

MPI_SEND(x(1,1) , 2, vector3x2, ...)

C F

Issues with Vectors

• Sending multiple vectors is not often useful
- extents are not defined as you might expect for 2D arrays

• A 3D array subsection is not a vector
- but cannot easily use 2D vectors as building blocks due to extents

- becomes even harder for higher-dimensional arrays

• It is possible to set the extent manually
- routine is called MPI_Type_create_resized

• For example, difficult to use vectors with MPI_Scatter to
scatter 2D datasets

20

MPI_Scatter 2D array

• Problem (i): displacements are not constant

- here, offsets from origin are 0, 2, 8 and 10 (floats)

• Solution

- use MPI_Scatterv which takes separate displacement for each rank

• Problem (ii): displacements multiplied by extent = 6 floats

- required offsets are not an integer multiple of the extent!

• Solution

- use MPI_Type_create_resized to reset extent to, e.g., one float

21

9

10

13

14

1

2

3

4

5

6

7

8

11

12

15

16

So why bytes for Alltoallw displs?
• Alltoall

- one datatype and no displacements

- byte displacement of message “i” is extent(dataype)*i

• Alltoallv

- one datatype and multiple displacements

- byte displacement of message “i” is extent(dataype[i])*i

- enables halo swapping in CFD exercise

- but a 2D decomposition has contiguous and non-contiguous halos

• Alltoallw

- multiple datatypes and multiple displacements

- I give up – work out the byte displacements yourself!

 22

Summary

• Regular or irregular domain decomposition codes

- Where the decomposition is static or changes infrequently

• Should investigate replacing point-to-point communication

- E.g. halo-exchange communication

• With neighbourhood collective communication

- Probably MPI_Ineighbor_alltoallw

• So that MPI can optimise the whole pattern of messages

- Rather than trying to optimise each message individually

• And so your application code is simpler and easier to read

23

