
MPI Shared Memory 

Model 
MPI processes behaving as threads 

1 



Overview 

• Motivation 

• Node-local communicators 

• Shared window allocation 

• Synchronisation 

2 



MPI + OpenMP 
• In OMP parallel regions, all threads access shared arrays 

- why can’t we do this with MPI processes? 

 

3 

P P P P P P P P P P P P 

MPI MPI + OpenMP 



Exploiting Shared Memory 

• With standard RMA 

- publish local memory in a collective shared window 

- can do read and write with MPI_Get / MPI_Put 

- (plus appropriate synchronisatio 

• Seems wasteful on a node 

- why can’t we just read and write directly as in OpenMP? 
 

• Requirement 

- technically requires the Unified model 

• where there is no distinction between RMA and local memory 

- can check this callng MPI_Win_get_attr with MPI_WIN_MODEL 

• model should be MPI_WIN_UNIFIED 

- this is not a restriction in practice for standard CPU architectures 

 4 



Procedure 

• Processes join separate communicators for each node 

• Shared array allocation across all processes on a node 

- OS can arrange for it to be a single global array 

 

• Access memory by indexing outside limits of local array 

- e.g. localarray[-1] will be last entry on the previous process 

 

• Need appropriate synchronisation for local accesses 
 

• Still need MPI calls for internode communication 

- e.g. standard send and receive 

 

 
5 



Splitting the communicator 

int MPI_Comm_split_type(MPI_Comm comm, int split_type, 

  int key, MPI_Info  info, MPI_Comm *newcomm) 

 

MPI_COMM_SPLIT_TYPE(COMM, SPLIT_TYPE, KEY, INFO, 

                    NEWCOMM, IERROR) 

INTEGER COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR 

 

 

6 

• comm: parent communicator, e.g. MPI_COMM_WORLD 

• split_type: MPI_COMM_NODE 

• key: controls rank ordering within sub-communicator 

• info: can just use default: MPI_INFO_NULL 



Example 

MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 

                    rank, MPI_INFO_NULL, &nodecomm); 

 

 

7 

P P P P P P P P P P P P 

                     COMM_WORLD 

                      size = 12 

                        rank 

0   1   2   3   4   5         6   7   8   9  10  11 

 

 

 

 

 

0   1   2   3   4   5         0   1   2   3   4   5 

        rank                          rank 

      size = 6                      size = 6 

      nodecomm                      nodecomm 



Allocating the array 

int MPI_Win_allocate_shared (MPI_Aint size, int disp_unit,  

  MPI_Info info, MPI_Comm comm, void *baseptr, MPI_Win *win) 

  

MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, BASEPTR,  

                        WIN, IERROR) 

  INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR 

  INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR 

8 

• size: window size in bytes 

• disp_unit: basic counting unit in bytes, e.g. sizeof(int) 

• info: can just use default: MPI_INFO_NULL 

• comm: parent comm (must be within a single node) 

• baseptr: allocated storage 

• win: allocated window 



Traffic Model Example 

9 

  MPI_Comm nodecomm; 

  int *oldroad; 

  MPI_Win nodewin; 

  MPI_Aint winsize; 

  int displ_unit; 

 

  winsize = (nlocal+2)*sizeof(int); 

 

  // displacements counted in units of integers 

  disp_unit = sizeof(int); 

 

  MPI_Win_allocate_shared(winsize, disp_unit, 

              MPI_INFO_NULL, nodecomm, &oldroad, &nodewin); 



Shared Array with winsize = 4 

10 

x[-1] 

x[3] x[0] x[3] x[0] 

x[4] 

noderank 0 noderank 1 noderank 2 

x[7] 



Synchronisation 

• Can do halo swapping by direct copies 

- need to ensure data is ready beforehand and available afterwards 

- requires synchronisation, e.g.. MPI_Win_fence 

- takes hints – can just set to default of 0 

 

• Entirely analogous to OpenMP 

- bracket remote accesses with omp_barrier or begin / end parallel 

 

  MPI_Win_fence(0, nodecomm); 

  oldroad[nlocal+2] = oldroad[nlocal] 

  oldroad[-1]       = oldroad[0]; 

  MPI_Win_fence(0, nodecomm); 

 

11 



Off-node comms 

• Direct read / write only works within node 

 

• Still need MPI calls for inter-node 

- e.g. noderank = 0 and noderank = nodesize-1 call MPI_Send / Recv 

- could actually use any rank to do this ... 

 

• This must take place in MPI_COMM_WORLD 

12 



Conclusion 

• Relatively simple syntax for shared memory in MPI 

- much better than roll-you-own solutions 

• Possible use cases 

- on-node computations without needing MPI 

- one copy of static data per node (not per process) 
 

• Advantages 

- an incremental “plug and play” approach unlike MPI + OpenMP 

• Disadvantages 

- no automatic support for splitting up parallel loops 

- global array may have halo data sprinkled inside 

- may not help in some memory-limited cases 

13 


