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Pollution in a pipe

• Jacobi iteration solving Laplace’s equation for diffusion in 2 

dimensions
for all grid points

u_new(I,j) = 1/4*(u(i-1, j) + u(i+1, j) 

+ u(i,j+1) + u(i,j-1))

• Works in iterations, solving to a specific residual (accuracy)

- As we parallelise this, the overall number of iterations and residual 

should be the same as the serial code which is a nice check
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Overview of serial code
double * u_k = malloc(sizeof(double) * (ny+2) * (ny+2)), * u_kp1 = malloc(sizeof(double) * (nx+2) * (ny+2)), *temp;

initialise(u_k, u_kp1);

double rnorm=0.0, bnorm=0.0, norm;

int i, j, k;

for (i=1;i<=nx;i++) {

for (j=1;j<=ny;j++) {

bnorm=bnorm+……….

}

}

bnorm=sqrt(bnorm);

for (k=0;k<MAX_ITERATIONS;k++) {

for (i=1;i<=nx;i++) {

for (j=1;j<=ny;j++) {

rnorm=rnorm+……….

}

}

norm=sqrt(rnorm)/bnorm;

if (norm < CONVERGENCE_ACCURACY) break;

for (i=1;i<=nx;i++) {

for (j=1;j<=ny;j++) {

u_kp1[i]=0.25 * ……..

}

}

temp=u_kp1; u_kp1=u_k; u_k=temp;

rnorm=0.0;

}

Compute the initial absolute residual

Compute the absolute residual of the 

current solution, then divide this by bnorm

to get the relative residual (how far we 

have progressed)

Termination criteria (level of accuracy met)

Jacobi 

iteration to 

progress 

the 

solution

Sets the pollution values at each end of the 

pipe and the rest to be zero (initial guess)
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Finding concurrency
• Split the problem up based 

upon its functionality

- Define the tasks and data 

decomposition implied by these

- Sometimes independent tasks are 

easily identified

• Calls to a function

• Independent iteration of a loop

• A number of independent activities 

being performed

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks, Order 
Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric Decomposition, 
Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

• Driven by data

- i.e. splitting up of an array into lots of different tasks

• Driven by functionality

- i.e. distinct tasks, cat datafile | grep “energy” | awk ‘{print $2, $3}’



Finding pieces to execute concurrently
• Split the problem up based upon the data it is operating on

- If it is difficult to split the problem into distinct tasks then instead 

concentrate on the data is manipulates - especially if this is the most 

computationally intensive part.

- E.g. Arrays: Concurrency can be defined in terms of updates to different 

segments of an array which might be decomposed in a variety of 

different ways.

nx+2 * ny+2 tasks, the major organising principal is the data
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Ordering the tasks

• Find and account for dependencies resulting from the 

constrains on the order of execution of tasks

- Needs to be restrictive enough to satisfy all constraints but no more.

1. Look at the data required by tasks before they can execute

- Find the task(s) that creates this to form a constraint

2. Can external services impose constraints

- For instance if a program must write to a file in a specific order

3. Note when an ordering does not exist

- This is equally important as if tasks can execute independently then 

there is an opportunity for increased parallelism.



Data sharing between the tasks

• Important to distinctly identify task local and shared data

- Tasks might define some global data that must be shared

- Some tasks might need access to a portion of another task’s data

- How we deal with shared data impacts the correctness (whether it 

produces the correct result) and performance (not waiting excessively in 

synchronisation calls and/or reducing communication overhead.)

• Broadly falls into categories of

- Read only: Because there is no modification no protection is needed

- Effectively local: Partitioned into subsets, each accessed by 1 task

- Read-write: The general case and most difficult to deal with

- Accumulate: Updated by many tasks with some operation (eg. Sum)



Design Evaluation

• Now we have our abstract tasks we need to evaluate these

- You can think of the steps so far as refining the problem to guide 

your work in the next stage.

- But are these tasks good enough to move onto the next overall 

strategy (Algorithm strategy)? Will they give us enough information 

to work with?
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Your task
• Parallelise it!

- In 1D using geometric decomposition

- Start with the simplest approach to halo swapping and then add in 

extra complexity to optimise this
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Effectively answering the question how best to combine these individual tasks 

together to form larger, UE based, groups. In this case we are combining rows of 

individual tasks with a specific number of rows per UE



Decomposed domain and halos
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Getting the source code
http://www.archer.ac.uk/training/course-material/2018/11/parallel-patterns-oxford/

qsub –q [RESERVATION CODE] subpractical.pbs



Wrap up……

• Going from blocking to non-blocking 

makes a big difference!

- Not so much on the overlapping

• Why is this?

- Not just the behaviour of the different 

versions, but the PE is quite low!

Version Runtime Speed up PE

Serial 39.69 s - -

Blocking parallel 3.05 s 13.01 0.13

Non-blocking parallel 0.85 s 46.69 0.48

Overlapping parallel 0.81 s 49 0.51

With a domain of size x=1024, y=8192. Solving to 3e-3 relative residual. 

Parallel runs all done with 4 nodes (96 processes.)

Sample solutions to the code parts are in the solutions directory



Scaling
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For the parallel efficiency we are comparing 

against the serial version. The parallel versions 

running on 1 core take longer (around 55 

seconds!) and-so compared to that the PE 

would be more attractive.



Blocking parallel version

Non-blocking parallel version
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Non-blocking vs overlapping

Non-blocking parallel version

Overlapping parallel version
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Why does the utilisation of later ranks 

seem better with non-blocking version?

Non-blocking parallel version


