
C O M P U T E | S T O R E | A N A L Y Z E

An Introduction to the Lustre
Parallel File System

Tom Edwards

tedwards@cray.com

mailto:tedwards@cray.com

C O M P U T E | S T O R E | A N A L Y Z E

Agenda

● Introduction to storage hardware
● RAID

● Parallel Filesystems
● Lustre

● Mapping Common IO Strategies to Lustre
● Spokesperson

● Multiple writers – multiple files

● Multiple writers – single file

● Collective IO

● Tuning Lustre Settings
● Case studies

● Conclusions

2

C O M P U T E | S T O R E | A N A L Y Z E

Building blocks of HPC file systems

● Modern Supercomputer hardware is typically built on two
fundamental pillars:
1. The use of widely available commodity (inexpensive) hardware.

2. Using parallelism to achieve very high performance.

● The file systems connected to computers are built in the
same way
● Gather large numbers of widely available, inexpensive, storage

devices;

● then connect them together in parallel to create a high bandwidth, high
capacity storage device.

C O M P U T E | S T O R E | A N A L Y Z E

Commodity storage

● There are typically two commodity storage technologies
that are found in HPC file-systems

● HDDs much more common but SSDs look promising.

● Both are commonly referred to as “Block Devices”

Hard Disk Drives (HDD) Solid State Devices (SSD)

Description Data stored magnetically on

spinning disk platters, read and

written by a moving “head”

Data stored in integrated

circuits, typically NAND flash

memory

Advantages • Large capacity (TBs)

• Inexpensive

• Very low seek latency

• High Bandwidth (~500MB/s)

• Lower power draw

Disadvantages • Higher seek latency

• Lower bandwidth

(<100MB/s)

• Higher power draw

• Expensive

• Smaller Capacity (GBs)

• Limited life span

C O M P U T E | S T O R E | A N A L Y Z E

Server

/f
ile

/d
a
ta

Large

file

written

to RAID

device

● RAID is a technology for combining multiple smaller block
devices into a single larger/faster block device

● Specialist RAID controllers automatically distribute data in
fixed size “blocks” or “stripes” over the individual disks

● Striping blocks over multiple disks allows data to read and
written in parallel resulting in higher bandwidth – (RAID0)

Redundant Arrays of Inexpensive Disks (RAID)

Higher

aggregate

bandwidth

RAID Device

R
A

ID
 C

o
n

tr
o

lle
r

Blocks

distributed

C O M P U T E | S T O R E | A N A L Y Z E

● Only using striping exposes data to increased risk as it is likely
that all data will be lost if any one drive fails

● To protect against this, the controller can store additional
“parity” blocks which allow the array to survive one or two
disks failing – (RAID5 / RAID6)

● Additional drives are required but the data’s integrity is ensured

Redundant Arrays of Inexpensive Disks (RAID)

Higher

aggregate

bandwidth

RAID Device

R
A

ID
 C

o
n

tr
o

lle
r

Blocks

distributed

Additional

parity

blocks

written to

“spare”

disks

Server

/f
ile

/d
a
ta

Large

file

written

to RAID

device

C O M P U T E | S T O R E | A N A L Y Z E

● A RAID6 array can survive any two drives failing
● Once the faulty drives are replaced, the array has to be

rebuilt from the data on the existing drives
● Rebuilds can happen while the array is running, but may

take many hours to complete and will reduce the
performance of the array

Degraded arrays

Higher

aggregate

bandwidth

RAID Device

R
A

ID
 C

o
n

tr
o

lle
r

Blocks

distributed

Additional

parity

blocks

written to

“spare”

disks

X

X

Server

/f
ile

/d
a
ta

Large

file

written

to RAID

device

C O M P U T E | S T O R E | A N A L Y Z E

Combining RAID devices in to a parallel
filesystem

● There are economic and practical limits on the size of
individual RAID6 arrays
● Most common arrays contain around 10 drives

● This limits capacity to Terabytes and bandwidth to a few GB/s

● It may also be difficult to share the file system with many client nodes.

● To achieve required performance supercomputers
combine multiple RAID devices to form a single parallel
file system

● ARCHER and many other supercomputers use the Lustre
parallel file system
● Lustre joins multiple block devices (RAID arrays) into a single file

system that applications can read/write from/to in parallel.

● Scales to hundreds of block devices and 100,000s of client nodes.

C O M P U T E | S T O R E | A N A L Y Z E

Lustre Building Blocks - OSTs

● Object Storage Targets (OST) – These are block devices
that data will be distributed over. These are commonly
RAID6 arrays of HDDs.

● Object Storage Server (OSS) – A dedicated server that is
directly connected to one or more OSS. These are usually
connected to the supercomputer via a high performance
network

● MetaData Server (MDS) – A single server per file system
that is responsible for holding meta data on individual files
● Filename and location

● Permissions and access control

● Which OSTs data is held on.

● Lustre Clients – Remote clients that can mount the Lustre
filesystem, e.g. Cray XC30 Compute nodes.

C O M P U T E | S T O R E | A N A L Y Z E

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Metadata

Server

(MDS)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

name

permissions

attributes

location

Object Storage

Server (OSS) +

Object Storage

Target (OST)

High Performance Computing Interconnect

Multiple

OSSs and

OSTS

One MDS

per

filesystem

10

C O M P U T E | S T O R E | A N A L Y Z E

ARCHER’s Lustre – Cray Sonexion Storage

11

2 x OSSs and 8 x OSTs
● Contains Storage controller, Lustre server, disk

controller and RAID engine

● Each unit is 2 OSSs each with 4 OSTs of 10
(8+2) disks in a RAID6 array

SSU: Scalable Storage Unit

MMU: Metadata Management Unit

Lustre MetaData Server
● Contains server hardware and storage

Multiple SSUs are combined to form
storage racks

C O M P U T E | S T O R E | A N A L Y Z E

ARCHER’s File systems

/fs2
6 SSUs

12 OSSs

48 OSTs

480 HDDs

4TB per HDD

1.4 PB Total

/fs3
6 SSUs

12 OSSs

48 OSTs

480 HDDs

4TB per HDD

1.4 PB Total

/fs4
7 SSUs

14 OSSs

56 OSTs

560 HDDs

4TB per HDD

1.6 PB Total

Infiniband Network

Connected to

the Cray XC30

via LNET router

service nodes.

C O M P U T E | S T O R E | A N A L Y Z E

Lustre data striping

13

Single logical user file

e.g.
/work/y02/y02/ted

OS/file-system

automatically divides

the file into stripes
Stripes are then read/written

to/from their assigned OST

Lustre’s performance comes from

striping files over multiple OSTs

C O M P U T E | S T O R E | A N A L Y Z E

RAID blocks vs Lustre Stripes

● RAID blocks and Lustre stripes appear, at least on the
surface, to perform the similar function, however there are
some important differences.

RAID Stripes/Blocks Lustre Stripes

Redundancy RAID OSTs are typically

configured with RAID6 to

ensure data integrity if an

individual drives failed

Lustre provides no redundancy, if

an individual OST becomes

available, all files using that array

are inaccessible

Flexibility The block/stripe size and

distribution is chosen at when

the array is created and cannot

be changed by the user

The number and size of the Lustre

stripes used can be controlled by

the user on a file-by-file when the

file is created (see later).

Size Lustre stripe sizes are usually

between 1 and 32 MB

C O M P U T E | S T O R E | A N A L Y Z E

Lustre

Client

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Open

name

permissions

attributes

location

Metadata

Server

(MDS)

OSTs

Lustre

Client

Read/write

Opening a file

15

The client sends a request to the MDS to

opening/acquiring information about the file

The MDS then passes back a list of OSTs

• For an existing file, these contain the

data stripes

• For a new files, these typically contain a

randomly assigned list of OSTs where

data is to be stored

Once a file has been opened no

further communication is required

between the client and the MDS

All transfer is directly between the

assigned OSTs and the client

C O M P U T E | S T O R E | A N A L Y Z E

File decomposition – 2 Megabyte stripes

16

3-0 5-0 7-0 11-0 3-1 5-1 7-1 11-1

11-0

7-0
3-0 5-0

2MB

2MB

2MB

2MB

2MB

2MB

2MB

2MB

3-1

OST 3

Lustre

Client

7-1

OST 5
OST 7

OST

11
5-1

11-1

C O M P U T E | S T O R E | A N A L Y Z E

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Metadata

Server

(MDS)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

name

permissions

attributes

location

Object Storage

Server (OSS) +

Object Storage

Target (OST)

High Performance Computing Interconnect

17

open(unit=12,file=“out.dat”)

C O M P U T E | S T O R E | A N A L Y Z E

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client
Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client

Lustre

Client
Lustre

Client

Metadata

Server

(MDS)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

name

permissions

attributes

location

Object Storage

Server (OSS) +

Object Storage

Target (OST)

High Performance Computing Interconnect

Multiple

OSSs and

OSTS

One MDS

per

filesystem

18

write(12,*) data

C O M P U T E | S T O R E | A N A L Y Z E

Key points

● Lustre achieves high performance through parallelism
● Best performance from multiple clients writing to multiple OSTs

● Lustre is designed to achieve high bandwidth to/from a
small number of files
● Typical use case is a scratch file system for HPC

● It is a good match for scientific datasets and/or checkpoint data

● Lustre is not designed to handle large numbers of small
files
● Potential bottlenecks at the MDS when files are opened

● Data will not be spread over multiple OSTs

● Not a good choice for compilation

● Lustre is NOT a bullet-proof file system.
● If an OST fails, all files using that OST are inaccessible

● Individual OSTs may use RAID6 but this is a last resort

● BACKUP important data elsewhere!

C O M P U T E | S T O R E | A N A L Y Z E

Mapping Common I/O Patterns to
Lustre

C O M P U T E | S T O R E | A N A L Y Z E

I/O strategies: Spokesperson

21

● One process performs I/O

● Data Aggregation or Duplication

● Limited by single I/O process

● Easy to program

● Pattern does not scale

● Time increases linearly with
amount of data

● Time increases with number of
processes

● Care has to be taken when doing
the all-to-one kind of
communication at scale

● Can be used for a dedicated I/O
Server

Bottlenecks

Lustre clients

C O M P U T E | S T O R E | A N A L Y Z E

I/O strategies: Multiple Writers – Multiple Files

22

● All processes perform

I/O to individual files

● Limited by file system

● Easy to program

● Pattern may not scale

at large process counts

● Number of files creates

bottleneck with metadata

operations

● Number of simultaneous

disk accesses creates

contention for file system

resources

C O M P U T E | S T O R E | A N A L Y Z E

I/O strategies: Multiple Writers – Single File

23

● Each process performs I/O
to a single file which is
shared.

● Performance

● Data layout within the
shared file is very
important.

● At large process counts
contention can build for
file system resources.

● Not all programming
languages support it

● C/C++ can work with
fseek

● No real Fortran
standard

C O M P U T E | S T O R E | A N A L Y Z E

I/O strategies: Collective IO to single or
multiple files

24

● Aggregation to a processor
in a group which processes
the data.

● Serializes I/O in group.

● I/O process may access
independent files.

● Limits the number of files
accessed.

● Group of processes
perform parallel I/O to a
shared file.

● Increases the number of
shares to increase file
system usage.

● Decreases number of
processes which access a
shared file to decrease file
system contention.

C O M P U T E | S T O R E | A N A L Y Z E

Special case : Standard output and error

25

● All STDIN, STDOUT, and

STDERR I/O streams

serialize through aprun

● Disable debugging

messages when running in

production mode.

● “Hello, I’m task 32,000!”

● “Task 64,000, made it

through loop.”

aprun

C O M P U T E | S T O R E | A N A L Y Z E

Tuning Lustre Settings

Matching Lustre striping to an application

C O M P U T E | S T O R E | A N A L Y Z E

Controlling Lustre striping

27

● lfs is the Lustre utility for setting the stripe properties of new
files, or displaying the striping patterns of existing ones

● The most used options are

● setstripe – Set striping properties of a directory or new file

● getstripe – Return information on current striping settings

● osts – List the number of OSTs associated with this file system

● df – Show disk usage of this file system

● For help execute lfs without any arguments
 $ lfs

 lfs > help

 Available commands are:
 setstripe
 find
 getstripe
 check
 ...

C O M P U T E | S T O R E | A N A L Y Z E

Sample Lustre commands: lfs df

crayadm@thor-1:~> lfs df -h

UUID bytes Used Available Use% Mounted on

snx11183-MDT0000_UUID 2.8T 25.0G 2.7T 1% /lustre[MDT:0]

snx11183-OST0000_UUID 169.4T 120.5T 47.0T 72% /lustre[OST:0]

snx11183-OST0001_UUID 169.4T 120.7T 46.9T 72% /lustre[OST:1]

snx11183-OST0002_UUID 169.4T 79.5T 88.0T 47% /lustre[OST:2]

snx11183-OST0003_UUID 169.4T 79.8T 87.7T 48% /lustre[OST:3]

snx11183-OST0004_UUID 169.4T 116.2T 51.4T 69% /lustre[OST:4]

snx11183-OST0005_UUID 169.4T 116.2T 51.4T 69% /lustre[OST:5]

snx11183-OST0006_UUID 169.4T 116.1T 51.4T 69% /lustre[OST:6]

snx11183-OST0007_UUID 169.4T 98.5T 69.1T 59% /lustre[OST:7]

filesystem summary: 1.3P 847.4T 492.9T 63% /lustre

crayadm@thor-1:~>

28

C O M P U T E | S T O R E | A N A L Y Z E

lfs setstripe

29

● Sets the stripe for a file or a directory
● lfs setstripe <file|dir> <-s size> <-i start> <-c
count>
● size: Number of bytes on each OST (0 filesystem default)

● start: OST index of first stripe (-1 filesystem default)

● count: Number of OSTs to stripe over (0 default, -1 all)

● Comments
● Can use lfs to create an empty file with the stripes you want (like the

touch command)

● Can apply striping settings to a directory, any children will inherit
parent’s stripe settings on creation.

● The stripes of a file is given when the file is created. It is not possible
to change it afterwards.

● The start index is the only one you can specify, starting with the
second OST. In general you have no control over which one is used.

C O M P U T E | S T O R E | A N A L Y Z E

Select best Lustre striping values

30

● Selecting the striping values will have a large impact on

the I/O performance of your application

● Rules of thumb:

1. # files > # OSTs => Set stripe_count=1

You will reduce the lustre contention and OST file locking this way

and gain performance

2. #files == 1 => Set stripe_count=#OSTs

Assuming you have more than 1 I/O client

3. #files < #OSTs => Select stripe_count so that you use all OSTs

Example : You have 8 OSTs and write 4 files at the same time, then

select stripe_count=2

● Always allow the system to choose OSTs at random!

C O M P U T E | S T O R E | A N A L Y Z E

Sample Lustre commands: striping

crystal:ior% mkdir tigger

crystal:ior% lfs setstripe -s 2m -c 4 tigger

crystal:ior% lfs getstripe tigger

tigger

stripe_count: 4 stripe_size: 2097152 stripe_offset: -1

crystal% cd tigger

crystal:tigger% ~/tools/mkfile_linux/mkfile BIGFILE 2g

crystal:tigger% ls -lh BIGFILE

-rw------T 1 harveyr criemp 2.0G Sep 11 07:50 BIGFILE

crystal:tigger% lfs getstripe BIGFILE

2g

lmm_stripe_count: 4

lmm_stripe_size: 2097152

lmm_layout_gen: 0

lmm_stripe_offset: 26

 obdidx objid objid group

 26 33770409 0x2034ba9 0

 10 33709179 0x2025c7b 0

 18 33764129 0x2033321 0

 22 33762112 0x2032b40 0

31

C O M P U T E | S T O R E | A N A L Y Z E

Case Study 1: Spokesman

32

● 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size
● Unable to take advantage of file system parallelism

● Access to multiple disks adds overhead which hurts performance

0

20

40

60

80

100

120

1 2 4 16 32 64 128160

W
ri

te
 (

M
B

/s
)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB
Stripe

Lustre

Client

C O M P U T E | S T O R E | A N A L Y Z E

Case Study 2: Parallel I/O into a single file

33

● A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
● Total I/O volume (reads and writes) is 850 GB.

● Utilizes parallel HDF5

● Default Stripe settings:
count =4, size=1M, index =-1.
● 1800 s run time (~ 30 minutes)

● Stripe settings: count=-1, size=1M, index = –1.
● 625 s run time (~ 10 minutes)

● Results
● 66% decrease in run time.

C O M P U T E | S T O R E | A N A L Y Z E

Case Study 3: Single File Per Process

34

● 128 MB per file and a 32 MB Transfer size, each file has a
stripe_count of 1

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

W
ri

te
 (

M
B

/s
)

Processes or Files

File Per Process
Write Performance

1 MB
Stripe

32 MB
Stripe

C O M P U T E | S T O R E | A N A L Y Z E

Conclusions

● Lustre is a high performance, high bandwidth parallel file
system.
● It requires many multiple writers to multiple stripes to achieve best

performance

● There is large amount of I/O bandwidth available to
applications that make use of it. However users need to
match the size and number of Lustre stripes to the way
files are accessed.
● Large stripes and counts for big files

● Small stripes and count for smaller files

● Lustre on ARCHER is for storing scratch data only
● IT IS NOT BACKED UP!

