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Overview

• Motivation

• Node-local communicators

• Shared window allocation

• Synchronisation
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MPI + OpenMP
• In OMP parallel regions, all threads access shared arrays

- why can’t we do this with MPI processes?
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MPI MPI + OpenMP
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Consequences

• Some successes reported - usually due to “threshold” effects

- not enough memory to use all cores with MPI

- fixed scalability limit of MPI parallelisation (e.g. slab-based FFTs)

Node Performance

Developer Time

More 

OpenMP

Serial code 

starts here

Pure MPI 

starts here
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Exploiting Shared Memory

• With standard RMA

- publish local memory in a collective shared window

- can do read and write with MPI_Get / MPI_Put

- plus appropriate synchronisation, e.g. MPI_Win_fence()

• Seems wasteful on a node

- why can’t we just read and write directly as in OpenMP?

• Requirement

- technically requires the Unified model

• where there is no distinction between RMA and local memory

- can check this callng MPI_Win_get_attr with MPI_WIN_MODEL

• model should be MPI_WIN_UNIFIED

- this is not a restriction in practice for standard CPU architectures
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Procedure

• Processes join separate communicators for each node

• Shared array allocation across all processes on a node

- OS can arrange for it to be a single global array

• Access memory by indexing outside limits of local array

- e.g. localarray[-1] will be last entry on the previous process

• Need appropriate synchronisation for local accesses

• Still need MPI calls for internode communication

- e.g. standard send and receive
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Splitting the communicator

int MPI_Comm_split_type(MPI_Comm comm, int split_type,

int key, MPI_Info info, MPI_Comm *newcomm)

MPI_COMM_SPLIT_TYPE(COMM, SPLIT_TYPE, KEY, INFO,

NEWCOMM, IERROR)

INTEGER COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR

• comm: parent communicator, e.g. MPI_COMM_WORLD

• split_type: MPI_COMM_TYPE_SHARED

• key: controls rank ordering within sub-communicator

• info: can just use default: MPI_INFO_NULL
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Example

MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED,

rank, MPI_INFO_NULL, &nodecomm);

P P P P PP P P P P PP

COMM_WORLD

size = 12

rank

0   1   2   3   4   5         6   7   8   9  10  11

0   1   2   3   4   5         0   1   2   3   4   5

rank                          rank

size = 6                      size = 6

nodecomm nodecomm
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Allocating the array

int MPI_Win_allocate_shared (MPI_Aint size, int disp_unit, 

MPI_Info info, MPI_Comm comm, void *baseptr, MPI_Win *win)

MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, 

WIN, IERROR)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

• size: window size in bytes

• disp_unit: basic counting unit in bytes, e.g. sizeof(int)

• info: can just use default: MPI_INFO_NULL

• comm: parent comm (must be within a single node)

• baseptr: allocated storage

• win: allocated window

11



Traffic Model Example

MPI_Comm nodecomm;

int *oldroad;

MPI_Win nodewin;

MPI_Aint winsize;

int displ_unit;

winsize = (nlocal+2)*sizeof(int);

// displacements counted in units of integers

disp_unit = sizeof(int);

MPI_Win_allocate_shared(winsize, disp_unit,

MPI_INFO_NULL, nodecomm, &oldroad, &nodewin);
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Shared Array with nlocal = 2

x[-1]

x[3]x[0] x[3]x[0]

x[4]

noderank 0 noderank 1 noderank 2

x[7]

• Default is contiguous block of memory across processes

- use value of info, alloc_shared_noncontig = true, to relax this
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Accessing another rank’s memory
• In previous diagram

- rank 1 can access rank 2’s x[0] by referencing its own x[4]

• Might be more convenient to reference as xrank2[0]

- but how do we find out address for xrank2?

- especially if we’ve allowed MPI to give us non-contiguous memory

• Rank 2 could MPI_Send its value of x to rank 0

- will not work in general!

• Separate processes can have different virtual addresses 

(i.e. pointer values) for the same physical location

- OS may do this deliberately to foil buffer overflow hacking attacks

• Must use special call

- see MPI_Win_shared_query()

- gives us a local pointer which we can use to access remote data
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Synchronisation

• Can do halo swapping by direct copies

- need to ensure data is ready beforehand and available afterwards

- requires synchronisation, e.g. MPI_Win_fence

- takes hints – can just set to default of 0

• Entirely analogous to OpenMP

- bracket remote accesses with omp_barrier or begin / end parallel

MPI_Win_fence(0, nodecomm);

oldroad[nlocal+2] = oldroad[nlocal]

oldroad[-1]       = oldroad[1];

MPI_Win_fence(0, nodecomm);
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Off-node comms

• Direct read / write only works within node

• Still need MPI calls for inter-node

- e.g. noderank = 0 and noderank = nodesize-1 call MPI_Send / Recv

- could actually use any rank to do this ...

• This must take place in MPI_COMM_WORLD
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Conclusion

• Relatively simple syntax for shared memory in MPI

- much better than roll-your-own solutions

• Possible use cases

- on-node computations without needing MPI

- one copy of static data per node (not per process)

• Advantages

- an incremental “plug and play” approach unlike MPI + OpenMP

• Disadvantages

- no automatic support for splitting up parallel loops

- global array may have halo data sprinkled inside

- may not help in some memory-limited cases
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