
MPI Shared Memory

Model
MPI processes behaving as threads

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

https://creativecommons.org/licenses/by-nc-sa/4.0/

Overview

• Motivation

• Node-local communicators

• Shared window allocation

• Synchronisation

4

MPI + OpenMP
• In OMP parallel regions, all threads access shared arrays

- why can’t we do this with MPI processes?

P P P P PP P P P P PP

MPI MPI + OpenMP

5

Consequences

• Some successes reported - usually due to “threshold” effects

- not enough memory to use all cores with MPI

- fixed scalability limit of MPI parallelisation (e.g. slab-based FFTs)

Node Performance

Developer Time

More

OpenMP

Serial code

starts here

Pure MPI

starts here

6

Exploiting Shared Memory

• With standard RMA

- publish local memory in a collective shared window

- can do read and write with MPI_Get / MPI_Put

- plus appropriate synchronisation, e.g. MPI_Win_fence()

• Seems wasteful on a node

- why can’t we just read and write directly as in OpenMP?

• Requirement

- technically requires the Unified model

• where there is no distinction between RMA and local memory

- can check this callng MPI_Win_get_attr with MPI_WIN_MODEL

• model should be MPI_WIN_UNIFIED

- this is not a restriction in practice for standard CPU architectures

7

Procedure

• Processes join separate communicators for each node

• Shared array allocation across all processes on a node

- OS can arrange for it to be a single global array

• Access memory by indexing outside limits of local array

- e.g. localarray[-1] will be last entry on the previous process

• Need appropriate synchronisation for local accesses

• Still need MPI calls for internode communication

- e.g. standard send and receive

8

Splitting the communicator

int MPI_Comm_split_type(MPI_Comm comm, int split_type,

int key, MPI_Info info, MPI_Comm *newcomm)

MPI_COMM_SPLIT_TYPE(COMM, SPLIT_TYPE, KEY, INFO,

NEWCOMM, IERROR)

INTEGER COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR

• comm: parent communicator, e.g. MPI_COMM_WORLD

• split_type: MPI_COMM_TYPE_SHARED

• key: controls rank ordering within sub-communicator

• info: can just use default: MPI_INFO_NULL

9

Example

MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED,

rank, MPI_INFO_NULL, &nodecomm);

P P P P PP P P P P PP

COMM_WORLD

size = 12

rank

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 0 1 2 3 4 5

rank rank

size = 6 size = 6

nodecomm nodecomm

10

Allocating the array

int MPI_Win_allocate_shared (MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, void *baseptr, MPI_Win *win)

MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, BASEPTR,

WIN, IERROR)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

• size: window size in bytes

• disp_unit: basic counting unit in bytes, e.g. sizeof(int)

• info: can just use default: MPI_INFO_NULL

• comm: parent comm (must be within a single node)

• baseptr: allocated storage

• win: allocated window

11

Traffic Model Example

MPI_Comm nodecomm;

int *oldroad;

MPI_Win nodewin;

MPI_Aint winsize;

int displ_unit;

winsize = (nlocal+2)*sizeof(int);

// displacements counted in units of integers

disp_unit = sizeof(int);

MPI_Win_allocate_shared(winsize, disp_unit,

MPI_INFO_NULL, nodecomm, &oldroad, &nodewin);

12

Shared Array with nlocal = 2

x[-1]

x[3]x[0] x[3]x[0]

x[4]

noderank 0 noderank 1 noderank 2

x[7]

• Default is contiguous block of memory across processes

- use value of info, alloc_shared_noncontig = true, to relax this

13

Accessing another rank’s memory
• In previous diagram

- rank 1 can access rank 2’s x[0] by referencing its own x[4]

• Might be more convenient to reference as xrank2[0]

- but how do we find out address for xrank2?

- especially if we’ve allowed MPI to give us non-contiguous memory

• Rank 2 could MPI_Send its value of x to rank 0

- will not work in general!

• Separate processes can have different virtual addresses

(i.e. pointer values) for the same physical location

- OS may do this deliberately to foil buffer overflow hacking attacks

• Must use special call

- see MPI_Win_shared_query()

- gives us a local pointer which we can use to access remote data

14

Synchronisation

• Can do halo swapping by direct copies

- need to ensure data is ready beforehand and available afterwards

- requires synchronisation, e.g. MPI_Win_fence

- takes hints – can just set to default of 0

• Entirely analogous to OpenMP

- bracket remote accesses with omp_barrier or begin / end parallel

MPI_Win_fence(0, nodecomm);

oldroad[nlocal+2] = oldroad[nlocal]

oldroad[-1] = oldroad[1];

MPI_Win_fence(0, nodecomm);

15

Off-node comms

• Direct read / write only works within node

• Still need MPI calls for inter-node

- e.g. noderank = 0 and noderank = nodesize-1 call MPI_Send / Recv

- could actually use any rank to do this ...

• This must take place in MPI_COMM_WORLD

16

Conclusion

• Relatively simple syntax for shared memory in MPI

- much better than roll-your-own solutions

• Possible use cases

- on-node computations without needing MPI

- one copy of static data per node (not per process)

• Advantages

- an incremental “plug and play” approach unlike MPI + OpenMP

• Disadvantages

- no automatic support for splitting up parallel loops

- global array may have halo data sprinkled inside

- may not help in some memory-limited cases

17

