
ARCHER Single Node
Optimisation

Vectorisation

Vector Instructions (Vectorisation)

• Modern CPUs can perform multiple operations each cycle
- Use special SIMD (Single Instruction Multiple Data) instructions

• e.g. SSE, AVX

- Operate on a "vector" of data
• typically 2 or 4 double precision floats (on Ivy Bridge)

- Potentially gives speedup in floating point operations

- Usually only one loop is vectorisable in loop nest
• And most compilers only consider inner loop

Vectorisation
• Same operation on multiple data items

- Wide registers

- SIMD needed to approach FLOP peak performance, but your code must
be capable of vectorisation

• x86 SIMD instruction sets:
- SSE: register width = 128 Bit

• 2 double precision floating point operands

- AVX: register width = 256 Bit
• 4 double precision floating point operands

256 bit

+

+

+

+

SIMD
instruction

256 bit

64 bit +

Serial
instruction

for(i=0;i<N;i++){

a[i] = b[i] + c[i]

}

do i=1,N

a(i) = b(i) + c(i)

end do

Intel AVX512
4

512-bit

32-bit

64-bit

• Skylake processor has AVX512 vector units per core
- Symmetrical units

• Only one supports some of the legacy stuff (x87, MMX, some of the SSE
stuff)

- Vector instructions have a latency of 6 cycles

• Optimising compilers will use vector instructions
- Relies on code being vectorisable

- ...or in a form that the compiler can convert to be vectorisable

- Some compilers are better at this than others

- But there are some general guidelines about what is likely to work...

When does the compiler vectorize
• What can be vectorized

- Only loops

• Usually only one loop is vectorisable in loopnest
- And most compilers only consider inner loop

• Optimising compilers will use vector instructions
- Relies on code being vectorisable

- Or in a form that the compiler can convert to be vectorisable

- Some compilers are better at this than others

• Check the compiler output listing and/or assembler listing
- Look for packed AVX/AVX2/AVX512 instructions
i.e. Instructions using registers zmm0-zmm31 (512-bit) ymm0-ymm31
(256-bit) xmm0-xmm31 (128-bit)

Instructions like vaddps, vmulps, etc…

Requirements for vectorisation
• Loops must have determinable (at run time) trip count

- rules out most while loops

• Loops must not contain function/subroutine calls
- unless the call can be inlined by the compiler

- maths library functions usually OK

• Loops must not contain branches or jumps
- guarded assignments may be OK
- e.g. if (a[i] != 0.0) b[i] = c * a[i];

• Loop trip counts needs to be long, or else a multiple of the
vector length

• Loops must no have dependencies between iterations
- reductions usually OK, e.g. sum += a[i];
- avoid induction variables e.g. indx += 3;
- use restrict
- may need to tell the compiler if it can’t work it out for itself

• Aligned data is best
- e.g. AVX vector loads/stores operate most effectively on 32-bytes

aligned address
- need to either let the compiler align the data....
- ..or tell it what the alignment is

• Unit stride through memory is best

Compilers
• Intel compiler requires

- Optimisation enabled (generally is by default)
• -O2

- To know what hardware it’s compiling for
• -xCORE-AVX512

• This is added automatically for you on ARCHER

- Can disable vectorisation
• -no-vec

• Useful for checking performance

- Intel compiler will provide vectorisation information
• -qopt-report=[n] (i.e. –qopt-report=5)

- Other compilers information
• Cray: -hlist=a

• GNU: -fdump-tree-vect-all=<filename>

Did my loop get vectorised?
• Always check the compiler output to see what it did

- CCE: -hlist=a
- GNU: -fdump-tree-vect-all=<filename>
- Intel: -opt-report3
- or (for the hard core) check the assembler generated

• Look to see which registers are in use.

• Clues from CrayPAT's HWPC measurements
- export PAT_RT_HWPC=13 or 14 # Floating point operations SP,DP

- Complicated, but look for ratio of operations/instructions > 1
• expect 4 for pure AVX with double precision floats

Did my loop get vectorised?

• GNU offers other options for checking:
• -fopt-info

• -O3 -fopt-info-missed=missed.all

• -O2 -ftree-vectorize -fopt-info-vec-missed

• -fopt-info-loop-optimized

Helping vectorisation

• Does the loop have dependencies?
- information carried between iterations

• e.g. counter: total = total + a(i)

- No:
• Tell the compiler that it is safe to vectorise

- Yes:
• Rewrite code to use algorithm without dependencies, e.g.

- promote loop scalars to vectors (single dimension array)
- use calculated values (based on loop index) rather than iterated counters, e.g.

• Replace: count = count + 2; a(count) = ...
• By: a(2*i) = ...

• move if statements outside the inner loop
• may need temporary vectors to do this (otherwise use masking operations)

• Is there a good reason for this?
- There is an overhead in setting up vectorisation; maybe it's not worth it

• Could you unroll inner (or outer) loop to provide more work?

Vectorisation example
• Compiler cannot easily vectorise:

- Loops with pointers
- Non-unit stride loops
- Funny memory patterns
- Unaligned data accesses
- Conditionals/Function calls in loops
- Data dependencies between loop iterations
- ….

int *loop_size;
void problem_function(float *data1, float *data2, float *data3, int
*index){

int i,j;
for(i=0;i<*loop_size;i++){
j = index[i];
data1[j] = data2[i] * data3[i];

}
}

Vectorisation example
• Can help compiler

- Tell it loops are independent
• #pragma ivdep
• !dir$ ivdep

- Tell it that variables or arrays are unique
• restrict

- Align arrays to cache line boundaries
- Tell the compiler the arrays are aligned
- Make loop sizes explicit to the compiler

• Ensure loops are big enough to vectorise
int *loop_size;
void problem_function(float * restrict data1, float * restrict data2, float
* restrict data3, int * restrict index){
int i,j,n;
n = *loop_size;
#pragma ivdep
for(i=0;i<n;i++){
j = index[i];
data1[j] = data2[i] * data3[i];

}
}

Vectorisation example
• This loop doesn’t vectorise either:
do j = 1,N

x = xinit
do i = 1,N
x = x + vexpr(i,j)
y(i) = y(i) + x

end do
end do

• Compiler will vectorise inner loop by default
- Dependency on x between loop iterations

do j = 1,N
x(j) = xinit

end do
do j = 1,N

do i = 1,N
x(i) = x(i) + vexpr(i,j)
y(i) = y(i) + x(i)

end do
end do

Data alignment

• When vectorising data aligned data is essential for
performance

• Unaligned data
- May require multiple data loads, multiple cache lines, multiple

instructions
- Will generate 3 different versions of a loop: peel, kernel, remainder

• Aligned data
- Minimum number of data loads/cache lines/instructions
- Will generate 2 different versions of a loop:

kernel and remainder

Cache line
a[0] a[1] a[2] a[3]

Vector register

Aligned data

• Aligned data is best
- e.g. AVX vector loads/stores operate most effectively on 32-bytes

aligned address

- need to either let the compiler align the data....

- ..or tell it what the alignment is

• Unit stride through memory is best

Align data
• Align on allocate/create (dynamic)

- _mm_malloc, _mm_free
float *a = _mm_malloc(1024*sizeof(float),64);
- align attribute (at definition, not allocation)
real, allocatable :: A(1024)
!dir$ attributes align : 64 :: a

• Align on definition (static)
float a[1024] __attribute__((aligned(64)));
real :: A(1024)
!dir$ attributes align : 64 :: a
• Common blocks in Fortran

- It’s not possible to use directives to align data inside a common block
- Can align the start of a common block
!DIR$ ATTRIBUTES ALIGN : 64 :: /common_name/
- Up to you to pad elements inside common block

• Derived types
- May need to use SEQUENCE keyword and manually pad to get correct alignment

Multi-dimensional alignment

• Need to be careful with multi-dimensional arrays and
alignment
- If you _mm_malloc each dimension then it should be fine

- If you do a single dimension _mm_malloc there may be issues:
float* a = _mm_malloc(16*15(sizeof(float), 64);

for(i=0;i<16;i++){

#pragma vector aligned

for(j=0;j<15;j++){

a[i*15+j]++;

}

}

Inform on alignment
• For non-static data, as well as aligning data, need to tell compiler it is aligned
• Number of different ways to do this
• Alignment of data inside a loop

- Specify all data in the loop is aligned
#pragma vector aligned
!dir$ vector aligned

• Alignment of an array
- Specify, for code after the alignment statement, a specific array is aligned
__assume_aligned(a, 64);
!dir$ assume_aligned a: 64

• May also need to define to properties of loop scalars
__assume(n1%16==0);
for(i=0;i<n;i++){
x[i] = a[i] + a[i-n1] + a[i+n1];

}
!dir$ assume(mod(n1,16).eq.0)

• Also can use OpenMP simd clause
- Specify array is aligned for simd loop
#pragma omp simd aligned(a:64)
!omp$ simd aligned(a:64)

Fortran data
• Different ways of passing data to subroutines can affect

performance
• Explicit arrays
subroutine vec_add_mult(A, B, C)
real, intent(inout), dimension(1024) :: A
real, intent(in), dimension(1024) :: B, C
- Compiler generates subroutine code based on contiguous data

• Packing/unpacking required to do this is done by the compiler at caller level
• May be overhead associated with this

- Need to tell the compiler the arrays are aligned (i.e. !dir$
assume_aligned or !dir$ vector aligned)

- Same for arrays where array size is passed as an argument to the
routine

Fortran data

• Assumed size arrays
subroutine vec_add_mult(A, B, C)

real, intent(inout), dimension(:) :: A

real, intent(in), dimension(:) :: B, C

- Compiler will generate different versions of the code, with and
without contiguous functionality
• Different versions may show up in the vector reports from the compiler

• If there are too many different potential versions not all of them will
necessarily be generated
- The fall back version (none unit stride, not vectorised) will be used in this case

for inputs that don’t match any of the other versions

- Choice which is used made at runtime

- Still need to tell the compiler the arrays are aligned

Fortran data

• Assumed shape arrays
subroutine vec_add_mult(A, B, C)

real, intent(inout), dimension(*) :: A

real, intent(in), dimension(*) :: B, C

- Compiler generates subroutine code based on contiguous data
• Packing/unpacking required to do this is done by the compiler at caller

level

• May be overhead associated with this

- Still need to tell the compiler the arrays are aligned

Fortran Indirect addressing
• Indirect addressing code can have some strange affects on

vectorisation
subroutine vec_add_mult(A, B, C, index)
real, intent(inout), dimension(1024) :: A
real, intent(in), dimension(1024) :: B, C
integer, intent(in), dimension(1024) :: index
integer :: I
- Following has flow dependency (needs ivdep directive)
do i=1,n
a(index(i)) = a(index(i)) + b(index(i)) * c(index(i))

end do
- Uses gather and scatter operations to pack/unpack indexed locations
- Following creates array temporary for right hand side evaluation
a(index(:)) = a(index(:)) + b(index(:)) * c(index(:))
- Ends up creating 2 loops
temp(:) = a(index(:)) + b(index(:)) * c(index(:))
a(index(:)) = temp(:)
- Uses gather/scatter in both loops

Example
16. + 1-------< do j = 1,N
17. 1 x = xinit
18. + 1 r4----< do i = 1,N
19. 1 r4 x = x + vexpr(i,j)
20. 1 r4 y(i) = y(i) + x
21. 1 r4----> end do
22. 1-------> end do

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 16

A loop starting at line 16 was not vectorized because a recurrence was found on "y" at line 20.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 18

A loop starting at line 18 was unrolled 4 times.

ftn-6254 ftn: VECTOR File = bufpack.F90, Line = 18

A loop starting at line 18 was not vectorized because a recurrence was found on "x" at line 19.

1.497ms

38. Vf------< do j = 1,N
39. Vf x(j) = xinit
40. Vf------> end do
41.
42. ir4-----< do j = 1,N
43. ir4 if--< do i = 1,N
44. ir4 if x(j) = x(j) + vexpr(i,j)
45. ir4 if y(i) = y(i) + x(j)
46. ir4 if--> end do
47. ir4-----> end do

ftn-6007 ftn: SCALAR File = bufpack.F90, Line = 42

A loop starting at line 42 was interchanged with the loop starting at line 43.

ftn-6004 ftn: SCALAR File = bufpack.F90, Line = 43

A loop starting at line 43 was fused with the loop starting at line 38.

ftn-6204 ftn: VECTOR File = bufpack.F90, Line = 38

A loop starting at line 38 was vectorized.

ftn-6208 ftn: VECTOR File = bufpack.F90, Line = 42

A loop starting at line 42 was vectorized as part of the loop starting at line 38.

ftn-6005 ftn: SCALAR File = bufpack.F90, Line = 42

A loop starting at line 42 was unrolled 4 times.

1.089ms

-37%

x promoted to vector:
trade slightly more memory
for better performance

OpenMP 4.0 SIMD directives

• Many compilers support their own sets of directives to
assist the compiler to vectorise loops.
- useful but not portable

• OpenMP 4.0 contains a standardised set of directives

Portable SIMD directives

• Use simd directive to indicate a loop should be vectorised

#pragma omp simd [clauses]

or
!$omp simd [clauses]

• Executes iterations of following loop in SIMD chunks

• Loop is not divided across threads

• SIMD chunk is set of iterations executed concurrently by
SIMD lanes

• Not a hint! Programmer is asserting independence of
iterations.

• Clauses control data environment, how loop is partitioned
• safelen(length) limits the number of iterations in a SIMD

chunk.
• linear lists variables with a linear relationship to the iteration

space (induction variables)
• aligned specifies byte alignments of a list of variables
• private, lastprivate, reduction and collapse have

usual meanings.
• Also declare simd directive to generate SIMDised versions

of functions.
• Can be combined with loop constructs (parallelise and

vectorise)
- #pragma omp for simd

