
Parallel design patterns 

ARCHER course
Practical three: Divide and conquer with a 

process pool (master worker) for mergesort



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/


Mergesort

• Starting from some randomly generated, unsorted data.

• Repeatedly divide the 

data (problem) up until 

it is trivial to solve 

• Then merge the small 

answers together to 

form the overall sorted 

list of numbers

• Maps very well to D&C 

pattern



Parallel mergesort
• Each division is a task, 

working down to some 

serial threshold (in the 

image this is 1, but in 

reality you probably want 

it to be higher than this.)

• Remember from the 

lecture, only create one 

task for the first half of the 

data and use the existing 

task for the second half

Skeleton code is provided, your task 

is to hook it all up with MPI!



How to do the task generation?

• Provide you with a process pool which implements the 

master worker pattern

- The master keeps track of which worker UEs are currently busy

- Workers sit there and wait for a command from the master to start

- When a task requests a new worker from the master, the master 

sends back the rank of this new worker. The new worker is 

provided with the rank of its parent when it is started and from this 

the two UEs can communicate

• i.e. the parent can tell the new worker what data it needs to process

Master

Worker Worker Worker Worker Worker Worker Worker

Function Description

int processPoolInit() Initialises the process pool (1=worker, 2=master)

void processPoolFinalise() Finalises and process pool (called from all)

int masterPoll() Master polls to determine whether to continue or not

int workerSleep() Worker waits for new task (1=new task, 0=stop)

int startWorkerProcess() Starts a new worker task and returns the rank of this

int getCommandData() Retrieves the rank of the task created this one

void shutdownPool() Called by anyone to shut down the pool



Wash up

• Sample solutions are 

available 

• The fact that the existing 

worker is reused for half of 

the data is really important 

here

- As otherwise workers would be 

sitting idle waiting for their 

children to complete



Computation vs overhead
Data size Serial 

threshold

Number 

workers

Task 

start up 

overhead

Comm

time (s)

Compute

Time (s)

Runtime 

(s)

100 10 16 6e-6 3.6e-5 2.0e-6 0.00125

1000 100 16 6e-6 4.0e-5 8.0e-6 0.00131

10000 2000 8 5e-6 1.2e-4 5.7e-4 0.00228

10000 1000 16 6e-6 8.4e-5 5.24e-4 0.00215

10000 100 128 1e-3 5.6e-3 2.2e-5 0.01559

1000000 100000 16 7e-6 3.1e-3 1.1e-2 0.05768

1000000 50000 32 5.7e-4 9.3e-3 5.6e-3 0.07008

1000000 10000 128 6.2e-4 1.3e-2 2.3e-3 0.08194

100000000 10000000 16 2.0e-5 0.083 1.50 6.27

100000000 1000000 128 5.8e-5 0.34 0.187 5.45


