
Shared Memory Programming with OpenMP - Exercise Notes

OpenMP at EPCC

Hardware
For	this	course	you	will	be	compiling	and	running	the	code	on	Cirrus:	you	should	
connect	to	login.cirrus.ac.uk
	
Linux	and	Mac	users	can	use	the	ssh	command:		
	
ssh -Y username@login.cirrus.ac.uk

Windows	users	should	install	MobaXterm	–	please	see	the	course	web	page	for	
instructions.		

Compiling using OpenMP

The	Intel	compilers	(icc/ifort)	are	available	on	Cirrus.		To	access	them	type	
	
module load intel-compilers-17
	
To	compile	an	OpenMP	code,	simply	add	the	flag	–qopenmp		
	
You	can	also	use	the	GNU	compilers	(gcc/gfortran)	instead:	to	access	an	up-to-
date	version	that	supports	the	latest	OpenMP	features,	type		
	
module load gcc
	
For	the	GNU	compilers	the	OpenMP	flag	is	–fopenmp		

Using a Makefile

The	Makefile	below	is	a	typical	example	of	the	Makefiles	used	in	the	exercises.	
The	option	-O3		is	a	standard	optimisation	flag	for	speeding	up	execution	of	the	
code.	

Fortran compiler and options
FC= ifort -O3 -qopenmp
Object files
OBJ= main.o \
sub.o
Compile
execname: $(OBJ)
$(FC) -o $@ $(OBJ)
.f.o:
$(FC) -c $<
Clean out object files and the executable.
clean:
rm *.o execname

To	build	the	code,	just	type	make,	and	to	remove	all	object	and	executable	files,	
type	make clean	
	

Job Submission
Batch	processing	is	very	important	as	it	is	the	only	way	of	accessing	the	compute	
nodes	on	Cirrus.	Interactive	access	is	not	allowed.	For	doing	accurate	timing	runs	
you	must	use	 the	compute	nodes.	To	do	 this,	you	should	submit	a	batch	 job	as	
follows.		
	
qsub myjob.pbs
		
where	myjob.pbs	is	the	shell	script	supplied	with	each	exercise.		
	
To	change	the	number	of	threads,	edit	the	script	and	change	the	value	assigned	
to	the	OMP_NUM_THREADS	variable.	To	run	on	different	numbers	of	threads	you	
can	reassign	this	variable	and	re-run	the	executable	multiple	times	in	the	same	
batch	 script.	 You	 can	monitor	 your	 job’s	 status	with	 the	qstat	 command	and	
jobs	can	be	deleted	with	qdel.	
	

Exercise 1: Hello World
	
This	 is	 a	 simple	 exercise	 to	 introduce	 you	 to	 the	 compilation	 and	 execution	 of	
OpenMP	programs.	The	example	code	can	be	found	in	*/HelloWorld/		where	
the	*	represents	the	language	of	your	choice,	i.e.	C	,	or	Fortran90.		
	
Compile	the	code,	making	sure	you	use	the	appropriate	flag	to	enable	OpenMP.	
Before	running	it,	set	the	environment	variable	OMP_NUM_THREADS to	a	
number	n	between	1	and	4	with	the	command:	

export OMP_NUM_THREADS=n

When	 run,	 the	 code	 enters	 a	 parallel	 region	 at	 the!$OMP PARALLEL /
#pragma omp parallel directive.	At	this	point	n	threads	are	spawned,	and	
each	 thread executes	 the	 print	 command	 separately.	 The	 OMP_GET_THREAD
NUM()	 / omp_get_thread_num()	 library	 routine	 returns	 a	 number	
(between	0	and	n-1)	which identifies	each	thread.

Extra Exercise
Incorporate	 a	 call	 to	 omp_get_num_threads()into	 the	 code	 and	 print	 its	
value	inside	and	outside	the	parallel	region.	
	

Exercise 2: Area of the Mandelbrot Set
The	aim	of	this	exercise	is	to	use	the	OpenMP	directives	learned	so	far	and	apply	
them	to	a	real	problem.	It	will	demonstrate	some	of	the	issues	which	need	to	be	
taken	into	account	when	adapting	serial	code	to	a	parallel	version.	

The Mandelbrot Set
The	Mandelbrot	Set	is	the	set	of	complex	numbers	c	for	which	the	iteration	𝑧 =
𝑧# +	c	 does	 not	 diverge,	 from	 the	 initial	 condition 	𝑧	 = 	𝑐 .	 To	 determine	
(approximately)	whether	a	point	c	lies	in	the	set,	a	finite	number	of	iterations	are	
performed,	and	if	the	condition	|z|	>	2	is	satisfied,	then	the	point	is	considered	to	
be	outside	the	Mandelbrot	Set.	What	we	are	interested	in	is	calculating	the	area	
of	the	Mandelbrot	Set.	There	is	no	known	theoretical	value	for	this,	and	estimates	
are	based	on	a	procedure	similar	to	that	used	here.	

The Code
The	method	we	shall	use	generates	a	grid	of	points	in	a	box	of	the	complex	plane	
containing	the	upper	half	of	the	(symmetric)	Mandelbrot	Set.	Then	each	point	is	
iterated	using	the	equation	above	a	finite	number	of	times	(say	2000).	If	within	
that	 number	 of	 iterations	 the	 threshold	 condition	 |z|	 >	 2	 is	 satisfied	 then	 that	
point	 is	 considered	 to	 be	 outside	 of	 the	 Mandelbrot	 Set.	 Then	 counting	 the	
number	of	points	within	the	Set	and	those	outside	will	lead	to	an	estimate	of	the	
area	of	the	Set.	
	
Parallelise	the	serial	code	using	the	OpenMP	directives	and	library	routines	that	
you	have	learned	so	far.	The	method	for	doing	this	is	as	follows:	
	

1. Start	 a	 parallel	 region	 before	 the	main	 loop,	 nest	making	 sure	 that	 any	
private,	 shared	 or	 reduction	 variables	 within	 the	 region	 are	 correctly	
declared.	

2. Modify	the	bounds	of	the	outermost	loop	so	that	each	thread	has	an	equal	
number	of	 the	points.	To	 calculate	 the	 loop	bounds	 for	 each	 thread	you	
will	 need	 to	 use	 omp_get_thread_num() and	
omp_get_num_threads()	

	
Once	you	have	written	the	code	try	it	out	using	1,	2,	3	and	4	threads.	Check	that	
the	 results	 are	 identical	 in	 each	 case,	 and	 compare	 the	 time	 taken	 for	 the	
calculations	using	different	number	of	threads.	
	

Extra Exercise
Is	your	solution	well	load	balanced?	Try	different	ways	of	mapping	iterations	to	
threads.	
	

Exercise 3: Mandelbrot again
You	can	start	from	the	code	you	have	already,	or	another	copy	of	the	sequential	
code	which	can	be	found	in	*/Mandelbrot2/.	
	
This	 time	parallelise	 the	outer	 loop	using	a	PARALLEL DO /	parallel for	
directive.	Don’t	 forget	 to	use	default(none)	and	declare	 the	shared,	private	
and	reduction	variables.	Add	a	schedule	clause	and	experiment	with	the	different	
schedule	kinds.	

	

Exercise 4: Molecular Dynamics

The	aim	of	this	exercise	is	to	demonstrate	how	to	use	OpenMP	critical	constructs	
to	parallelise	a	molecular	dynamics	code.	
	

The Code

The	code	can	be	found	in	*/MolDyn/	.		The	code	is	a	molecular	dynamics	(MD)	
simulation	 of	 argon	 atoms	 in	 a	 box	 with	 periodic	 boundary	 conditions.	 The	
atoms	are	initially	arranged	as	a	face-centred	cubic	(fcc)	lattice	and	then	allowed	
to	 melt.	 The	 interaction	 of	 the	 particles	 is	 calculated	 using	 a	 Lennard-Jones	
potential.	 The	 main	 loop	 of	 the	 program	 is	 in	 the	 file	 main.c	 / main.f90.	
Once	the	lattice	has	been	generated	and	the	forces	and	velocities	initialised,	the	
main	 loop	 begins.	 The	 following	 steps	 are	 undertaken	 in	 each	 iteration	 of	 this	
loop:	
	
1.	 The	 particles	 are	 moved	 based	 on	 their	 velocities,	 and	 the	 velocities	 are	
partially	updated	(call	to	domove)	
2.	The	forces	on	the	particles	in	their	new	positions	are	calculated	and	the	virial	
and	potential	energies	accumulated	(call	to	forces)	
3.	The	forces	are	scaled,	the	velocity	update	is	completed	and	the	kinetic	energy	
calculated	(call	to	mkekin)	
4.	The	average	particle	velocity	is	calculated	and	the	temperature	scaled	(call	to	
velavg)	
5.	 The	 full	 potential	 and	 virial	 energies	 are	 calculated	 and	 printed	 out	 (call	 to	
prnout)	
	

Parallelisation
	
The	parallelisation	of	this	code	is	a	little	less	straightforward.	There	are	several	
dependencies	within	the	program	which	will	require	use	of	the	critical	construct	
as	well	as	the	reduction	clause.	The	instructions	for	parallelising	the	code	are	as	
follows:	
	
1.	 Edit	 the	 subroutine/function	 in	 forces.c	 /	 forces.f90.	 Add	 a	 !$OMP
PARALLEL DO	 /	#pragma omp parallel for	 	 directive	 to	 the	 outermost	
loop	in	this	subroutine,	identifying	any	private	or	reduction	variables.		
Hint:	There	are	2	reduction	variables.	
2.	 Identify	 the	variable	within	 the	 loop	which	must	be	protected	 from	possible	
race	 conditions	 and	 use	 !$OMP CRITICAL	 /	 #pragma omp critical	 	 to	
ensure	this	is	the	case.	
	
Once	this	is	done	the	code	should	be	ready	to	run	in	parallel.	Compare	the	output	
using	2,	3	and	4	 threads	with	 the	serial	output	 to	check	 that	 it	 is	working.	Try	
adding	the	schedule	clause	with	the	kind	static,n		to	the	DO/for	directive	for	
different	values	of	n	.	Does	this	have	any	effect	on	performance?	
	

Exercise 5: Molecular Dynamics Part II
Following	on	from	the	previous	exercise,	we	will	update	the	molecular	dynamics	
code	to	take	advantage	of	orphaning	and	examine	the	performance	issues	of	
using	critical	regions.	
	

Orphaning
To	reduce	the	overhead	of	starting	and	stopping	the	threads,	you	can	change	the	
PARALLEL DO	/	parallel for		directive	to	a	DO/for		directive	and	start	the	
parallel	region	outside	the	main	loop	of	the	program.	In	main.c	/	main.f90		
enclose	the	main	loop	in	a	parallel	region.	Except	for	the	forces		routine,	all	the	
other	work	in	this	loop	should	be	executed	by	one	thread	only.	Ensure	that	this	is	
the	case	using	the	single	or	master	construct.	Recall	that	any	reduction	variables	
updated	in	a	parallel	region	but	outside	of	the	DO/for	construct	should	be	
updated	by	one	thread	only.	As	before,	check	your	code	is	still	working	correctly.	
Is	there	any	difference	in	performance	compared	with	the	code	without	
orphaning?	
	

Extra exercises
	
Try	using	atomic	directives	or	lock	routines	(with	one	lock	variable	per	particle)	
instead	of	critical	regions.		
	
An	alternative	to	synchronized	updates	to	shared	variables	is	to	have	per-thread	
private	copies	which	are	added	together	at	the	end	of	the	parallel	loop.		In	
Fortran	f	can	be	simply	be	declared	as	a	reduction	variable.	In	C,	the	starting	
element	and	number	of	elements	of	the	array	also	need	to	be	specified,	e.g.	as	
reduction(+:f[0:3*npart]).		
	
Which	of	these	alternatives	gives	the	best	performance?		

Exercise 6: Nested parallelism
Now	 parallelise	 both	 outer	 loops	 in	 the	 Mandelbrot	 example	 using	 nested	
parallel	regions.	To	enable	nested	parallelism	use		
	
export OMP_NESTED=true		
	
and	set	the	number	of	threads	at	each	level	with,	for	example,		
	
export OMP_NUM_THREADS=2,4	
	
You	 will	 need	 to	 think	 carefully	 about	 the	 data	 scoping	 (i.e.	
shared/private/reduction).	 Experiment	with	 different	 thread	 numbers	 –	 is	 the	
performance	ever	better	than	with	one	level	of	parallelism?		
	
You	can	also	try	parallelising	both	loops	using	a	parallel	loop	directive	on	the	
outer	loop	and	a	collapse	clause.			

