
Welcome!

Virtual tutorial starts at 15:00 GMT

Please leave feedback afterwards at:

www.archer.ac.uk/training/feedback/online-course-

feedback.php

Parallel supermeshing for

multimesh modelling
ARCHER Virtual Tutorial, 13/07/2016

Iakovos Panourgias

<i.panourgias@epcc.ed.ac.uk>

Reusing this material

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International

License.

http://creativecommons.org/licenses/by-nc-

sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their

permission before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Outline

ÅMotivation

ÅFluidity

Ålibsupermesh 2D / 3D

ÅResults

Motivation

ÅModels which use multiple non-matching unstructured

meshes generally need to solve a computational

geometry problem, and construct intersection meshes in

a process known as supermeshing.

ÅParallel supermeshing; for meshes with non-matching

domain decompositions.

Fluidity

ÅUnstructured finite element code (one, two and three

dimensions)

ÅAnisotropic mesh adaptivity

ÅApplications:

ÅCFD, geophysical fluid dynamics,

mantle convection,

ocean and reservoir modelling,

mining, etc.

Supermeshing

ÅWas originally developed to perform data interpolation on

two or more different unstructured meshes.

ÅAllows equations to be solved on a complex unstructured

mesh while simultaneously using input data from a

separate and completely different unstructured mesh.

ÅA supermesh is a mesh with the following property:

each element in the supermesh is contained within

exactly one element of each parent mesh.

Supermeshing Figure

Supermeshing algorithm

1. Identification of pairs of elements, one on each mesh,

which intersect;

2. Generation of a mesh of their intersection (the "local

supermesh");

3. The transfer of data onto this intersection mesh.

libsupermesh

Key capabilities:

ÅEasy to use

ÅHandles unstructured meshes with non-matching domain

decompositions

ÅGeneral purpose library (user specified compute

functionality)

ÅImplements several new algorithms for identifying

candidate pairs of intersection elements

ÅHas been tested on up to 10,000 cores on ARCHER

ÅHas been tested as a replacement intersector finder with

Fluidity

Getting libsupermesh

libsupermesh has been compiled and tested on ARCHER

(using GNU (5.1.0), Intel (15.0.2.164) and Cray (8.4.1)

compilers).

ÅThe library, manual and example programs are available

at:

https://bitbucket.org/libsupermesh/

ÅMinimal dependencies to install

ÅBuild instructions and cmake file provided

ÅDistributed under the terms of the GNU Lesser General

Public License version 2.1

https://bitbucket.org/libsupermesh/
https://bitbucket.org/libsupermesh/

Compiling with libsupermesh

Include a single libsupermesh module file:

use libsupermesh_parallel_supermesh

You have to compile libsupermesh with the same compiler

(and version) as your application.

libsupermesh development (serial)

ÅExisting Fluidity supermeshing code was extracted and

copied to a standalone library (libsupermesh)

ÅCGAL1 element intersection code was removed

ÅWild Magic intersection code was removed

ÅIntersection code was replaced with an optimised

implementation

ÅSupermeshing and intersection code was cleaned up ï

removing all dependencies with Fluidity data structures

1 http://www.cgal.org/

http://www.cgal.org/

libsupermesh development (serial)

Several algorithms for identifying candidate pairs of elements that may

intersect were implemented. All algorithms are based upon an axis-aligned

bounding box (AABB) intersection predicate:

Å Sort intersection

Å Quadtree intersection finder

Å Octree intersection finder

Å R*-tree intersection finder1

Å Advancing front intersection finder2

1 http://libspatialindex.github.io/

2 ñP. E. Farrell and J. R. Maddison, ñConservative interpolation between

volume meshes by local Galerkin projectionò, Computer Methods in

Applied Mechanics and Engineering, 200, pp. 89-100, 2011ò

http://libspatialindex.github.io/

libsupermesh development (serial)
The libsupermesh standalone library exposes several interfaces which

return a local mesh of the intersection of two elements (a local

supermesh). The following interfaces are supported:

Å One dimension: interval intersection, intended primarily for code

testing;

Å Two dimensions: Intersection of two-dimensional convex polygons

using the Sutherland- Hodgman clipping algorithm

Å Three dimensions: Intersection of three-dimensional convex polyhedra

using the ñplane-at-a-time clippingò algorithm

Å General dimensions: convenience interfaces which use one of the

above mentioned methods

libsupermesh development (serial)

Å Integration with Fluidity (as a replacement intersection and

supermeshing implementation)

Å libsupermesh has been added as an optional Fluidity component

libsupermesh testing (serial)

Å Wrote a regression testing suite

Å Used Fluidity regression testing suite

Å Run tests with the following GNU Fortran options:

-O0 -g -Wall -fcheck=all

-ffpe-trap=invalid,zero,overflow,underflow

-finit-integer=-66666 -finit-real=nan -fimplicit-none

libsupermesh results (serial)

Å The 2D/3D benchmarks take as input two quasi-uniform resolution

unstructured triangle/tetrahedra meshes of an equilateral

triangle/square pyramid domain, A and B, with mesh B having roughly

one half the element size of mesh A.

Å The meshes were generated using Gmsh1.

1 http://gmsh.info/

A B

http://gmsh.info/
http://gmsh.info/

libsupermesh results (serial) ï 2D Intersection Finder

libsupermesh results (serial) ï 2D Intersector

