
PORTING CP2K TO THE
INTEL XEON PHI

ARCHER Technical Forum, Wed 30th July
Iain Bethune (ibethune@epcc.ed.ac.uk)

Outline
• Xeon Phi Overview
• Porting CP2K to Xeon Phi
• Performance Results
•  Lessons Learned

•  Further Reading

Xeon Phi Overview
•  Terminology:

•  Project Larrabee
•  Intel research project – planned to develop a GPGPU architecture

shelved in 2010
•  Many Integrated Core (MIC)

•  Scalable architecture for many-core computing based on x86 cores
•  Intel® Xeon PhiTM

•  Product name e.g. Xeon Phi 5110P
•  Code names:

•  Knight’s Ferry – MIC prototype (2010), 45 nm
•  Knight’s Corner – current generation (2013), 22 nm
•  Knight’s Landing – announced (2015), 14 nm

Xeon Phi Overview
• Xeon Phi 5110P

•  Co-processor attached
via PCIe bus

•  60 cores @ 1.053 GHz
•  4 virtual threads per core
•  512-bit (8 doubles) vector

unit per core
•  Coherent L2 cache
•  8 GB main memory
•  1.011 GFLOP/s per co-

processor

Xeon Phi Overview

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Xeon Phi™ Architecture Overview

3

Cores: 61 core s, at 1.1 GHz
in-order, support 4 threads

512 bit Vector Processing Unit
32 native registers

Reliability Features
 Parity on L1 Cache, ECC on memory

CRC on memory IO, CAP on memory IO

High-speed bi-directional
ring interconnect

Fully Coherent L2 Cache

8 memory controllers
16 Channel GDDR5 MC

PCIe GEN2

Image © Intel, ARCHER Xeon Phi Training Course

Xeon Phi Overview
• Operation Modes:

•  Native Mode
•  Xeon Phi runs cut-down Linux
•  SSH in and launch (parallel) program
•  Later case study used native mode only

•  Offload Mode
•  Main program thread runs on host CPU
•  Marked-up regions are offloaded for execution on Xeon Phi

•  OpenCL
•  Main program runs on CPU
•  Launch OpenCL kernels on the Xeon Phi

Xeon Phi Overview
• Programming Models:

•  Intel Compiler
•  Standard C, C++, Fortran …
•  Required to generate vector instructions

•  MPI
•  In native mode on single Xeon Phi (or across several)
•  In offload mode between host CPUs
•  Single communicator spanning host and MIC

•  OpenMP
•  Within a kernel in offload mode
•  In native mode, possibly hybrid with MPI

•  Intel TBB, Cilk+, OpenCL, OpenACC…

Porting CP2K to Xeon Phi

“CP2K is a program to perform atomistic and molecular
simulations of solid state, liquid, molecular, and biological
systems. It provides a general framework for different
methods such as e.g., density functional theory (DFT) using
a mixed Gaussian and plane waves approach (GPW) and
classical pair and many-body potentials.”

From www.cp2k.org (2004!)

Porting CP2K to Xeon Phi
•  Many force models:

•  Classical
•  DFT (GPW)
•  Hybrid Hartree-Fock
•  LS-DFT
•  post-HF (MP2, RPA)

•  Simulation tools
•  MD (various ensembles)
•  Monte Carlo
•  Minimisation (GEO/CELL_OPT)
•  Properties (Spectra, excitations …)

•  Open Source
•  GPL, www.cp2k.org
•  1m loc, ~2 commits per day
•  ~10 core developers
•  3rd most used code on ARCHER

Porting CP2K to Xeon Phi
• Work done thanks to funding from PRACE

• Porting to Intel Compiler
•  Just add –mmic !
•  Fixed several bugs (in CP2K and in Intel compiler / MKL)
•  Recommend using ifort 14.1 and MKL 11.1

• Using MIC-optimised libraries
•  MKL up to 5x faster than FFTW 3.3.3 for 1D FFT (n=256)
•  MKL up to 3x faster for 3D FFT (n=128)

Porting CP2K to Xeon Phi
•  Task placement – how to place 240 virtual threads?

Performance Results
•  Initial port (no optimisations):

•  Langasite relaxation (DFT)
•  8 MPI x 16 OpenMP (128 threads)
•  Around ~8x slower than 8-core Sandy Bridge CPU

• Optimisation:
•  Main bottlenecks are poor scaling with OpenMP

•  Parallelised two expensive routines
•  Total memory usage also a constraint

•  Finally, still 5.4x slower than the CPU!

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Optimising CP2K for the Intel Xeon Phi

Fiona Reida, Iain Bethunea*
aEPCC, The University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK

Abstract

CP2K is an important European program for atomistic simulation for many users of the PRACE Research
Infrastructure as well as national and local compute resources. In the context of a PRACE Preparatory Access
Type C project, we have parallelised several routines in CP2K to allow the code to gain better performance on
the Intel Xeon Phi for a materials science application. We have obtained a 50% speedup in the maximum
performance of the code on the Xeon Phi, but have not been able to demonstrate better performance than running
the same calculation on a Sandy Bridge 16-core CPU node. We present details of the developments made to
CP2K, and discuss several lessons, which will be of wider interest to developers considering porting their codes
to Xeon Phi.

Application Code: CP2K

1. Introduction
CP2K [1] is a freely available and widely used program for atomistic simulation in the fields of Computational
Chemistry, Materials Science, Condensed Matter Physics and Biochemistry, amongst others. Today’s
researchers require robust and portable applications that allow them to tackle complex and challenging problems
by taking advantage of the latest advances in computer hardware. CP2K has demonstrated scalability to 10,000s
of CPU cores using a mixed-mode MPI/OpenMP parallelisation strategy, and has been deployed on a range of
Tier-0 and Tier-1 PRACE systems. The code can make use of GPU accelerators using Nvidia’s CUDA
programming model, and recent work within PRACE [2] ported the code to Intel’s MIC (Many Integrated Core)
architecture, using the existing parallelisation, although initial performance results were disappointing.

Figure 1: A generic Langasite structure that could be studied with CP2K (from Ben Slater, UCL).

* Corresponding author. E-mail address: ibethune@epcc.ed.ac.uk

Lessons Learned
• Porting is relatively easy

•  If the source code is portable…
•  … and already parallelised

• Native mode provides an easy way in to using Xeon Phi
•  But finding enough parallelism to fill 240 threads with memory limit

of 8 GB is a hard strong-scaling problem
•  Different approach to multi-core, memory rich on-node parallelism
•  Fine-grained parallelism required (e.g. data parallel)
•  Could scale across multiple MICs to harness more memory, but this

comes with additional overhead

Lessons Learned
• Offload mode

•  Complex logic, function calls are much slower on KNC core than on
Xeon

•  For Knight’s Corner, might be better to run use offload mode and
only run suitable kernels on the Xeon Phi

• Serial Optimisation
•  Good auto-vectorisation, sometimes necessary to align and/or pad

arrays.
•  P54C cores are slow, and memory bandwidth is limited. Expect

this to improve on KNL.

Summary
•  Xeon Phi offers promising performance gains

•  Comparable performance to current GPUs
•  Works best with data parallel codes with large amount of fine-grained

parallelism

•  Easy to use
•  Thanks to support for existing common programming models
•  Still need a highly parallel algorithm

•  Knight’s Landing expected 2015
•  Self-hosting
•  Higher memory b/w (stacked memory) + 384 GB DDR4
•  AVX-512 vectorisation and Atom cores.

Further Reading
•  Programming the Xeon Phi (ARCHER training course

materials)
•  https://www.archer.ac.uk/training/course-material/2014/06/

XeonPhi_Bristol/

•  Evaluating CP2K on Exascale Hardware: Intel Xeon Phi
•  http://www.prace-ri.eu/IMG/pdf/wp152.pdf

•  Optimising CP2K for the Intel Xeon Phi
•  http://www.prace-ri.eu/IMG/pdf/wp140.pdf

•  Intel Xeon Phi Webinar:
•  https://software.intel.com/en-us/articles/intel-xeon-phi-webinar

